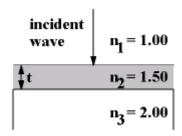

PROBLEM 1 – 15 points

[5 points] (a) A green laser beam ($\lambda = 532$ nm in air) is incident on a double slit, creating an interference pattern of bright and dark spots on a screen some distance away. If you want the spots in the pattern to be closer together (measuring the distance between spots as the distance between their centers) which of the following changes could you make? Select all that apply. Grading scheme: +1 for each correct choice; -1 for each incorrect choice. Negative scores will be given zero.
[] Replace the green laser by a red laser.
[] Replace the green laser by a violet laser.
[] Increase d, the distance between the two slits.
[] Decrease d, the distance between the two slits.
[] Increase the distance between the double slit and the screen.
[] Decrease the distance between the double slit and the screen.
[] Immerse the entire apparatus in water.
[] Immerse the entire apparatus in olive oil.
[] Replace the double slit by a diffraction grating, keeping d the same
[] Use a beam of electrons instead of a green laser, with the electrons having a de Broglie wavelength of 532 nm.
Now assume that the slits are separated by a distance of $d = 5.32 \times 10^{-5}$ m. A screen is placed 20 m away from the slits. Remember that for small angles we can use the approximation $\theta \approx \sin \theta \approx \tan \theta$.
[5 points] (b) Find the spacing between the central maximum and one of the first-order maxima on the screen.
[5 points] (c) The entire apparatus is now immersed in a liquid that has an index of refraction $n = 1.5$. What is the new spacing between the central maximum and one of the first-order maxima on the screen?

PROBLEM 2 – 15 points

The diagram shows four situations in which light of wavelength λ is incident perpendicularly on a very thin layer (the middle layer in each case). The indicated indices of refraction are $n_1 = 1.50$ and $n_2 = 2.00$.


[8 points] (a) In each case, consider what happens to the reflected light in the limit where the thickness of the thin layer approaches zero.

(i) In case A, a thin-film thickness approaching zero causes the reflected light to be		
[] eliminated by destructive interference	[] bright by constructive interference	
(ii) In case B, a thin-film thickness approaching zero causes the reflected light to be		
[] eliminated by destructive interference	[] bright by constructive interference	
(iii) In case C, a thin-film thickness approaching zero causes the reflected light to be		
[] eliminated by destructive interference	[] bright by constructive interference	
(iv) In case D, a thin-film thickness approaching zero causes the reflected light to be		
[] eliminated by destructive interference	[] bright by constructive interference	

[7 points] (b) In **case B**, what is the minimum **non-zero** thickness of the thin-film that would produce **destructive interference** for reflected light if the wavelength of the incident light is 600 nm (measured in air)?

PROBLEM 3 - 15 points

A thin piece of glass with an index of refraction of n = 1.50 is placed on top of a medium that has an index of refraction n = 2.00. A beam of light traveling in air (n = 1.00) shines perpendicularly down on the glass. The beam contains light of only two colors, blue light with a wavelength in air of 450 nm and orange light with a wavelength in air of 600 nm.

[5 points] (a) What is the minimum non-zero thickness of the glass that gives completely constructive interference for the blue light reflecting from the film?

[5 points] (b) What is the minimum non-zero thickness of the glass that gives completely constructive interference for the orange light reflecting from the film?

[5 points] (c) What is the minimum non-zero thickness of the glass that gives completely constructive interference for BOTH the blue and orange light simultaneously?