Appendix B: Percent Error and Percent Difference

When reporting your experimental result, you will compare it to either an accepted value or an experimental value measured using a different procedure to check for consistency.

Comparing an experimental value to a theoretical value

Percent error is used when comparing an experimental result E with a theoretical value T that is accepted as the "correct" value.

percent error
$$=$$
 $\frac{|T - E|}{T} \times 100\%$ (1)

For example, if you are comparing your measured value of 10.2 m/s^2 with the accepted value of 9.8 m/s² for the acceleration due to gravity g, the percent error would be

percent error
$$= \frac{|9.81 - 10.2|}{9.81} \times 100\% = 4\%$$
 (2)

Often, fractional or relative uncertainty is used to quantitatively express the precision of a measurement.

percent uncertainty =
$$\frac{\text{uncertainty}}{E} \times 100\%$$
 (3)

The percent uncertainty in this case would be

percent uncertainty
$$= \frac{0.39}{10.2} \times 100\% = 3.82\%$$
 (4)

Comparing two experimental values

Percent difference is used when comparing two experimental results E_1 and E_2 that were obtained using two different methods.

percent difference =
$$\frac{|E_1 - E_2|}{\frac{E_1 + E_2}{2}} \times 100\%$$
(5)

Suppose you obtained a value of 9.95 m/s² for g from a second experiment. To compare this with the result of 10.2 m/s² from the first experiment, you would calculate the percent difference to be

percent difference =
$$\frac{|9.95 - 10.2|}{\frac{9.95 + 10.2}{2}} \times 100\% = 2.5\%$$
 (6)