Name	Lab Partner	
TA Name	Section	Date

Determination of an Equilibrium Constant Worksheet

As you work through the steps in the lab procedures, record your experimental values and the results on this worksheet.

Solution #	Volume of 0.100 M Fe ³⁺ (mL)	Volume of 6.00x10 ⁻⁴ M SCN ¹⁻ (mL)	Volume of water (mL)	Total Volume (mL)	[FeSCN ²⁺] (M)	Absorbance at~470 nm
Blank	1.00	0.00	7.00	8.00		
1A	1.00	1.00	6.00	8.00		
2A	1.00	2.00	5.00	8.00		
3A	1.00	3.00	4.00	8.00		
4A	1.00	4.00	3.00	8.00		
Equation	on of Trendline	R ² Value _				

Table A: Calibration Curve of $FeSCN^{2+}$ Solutions

1. What is the initial concentration of SCN⁻ in Solution 1A? Show your work; remember to account for dilution. Pay attention to significant figures.

2. Given your result from Question 1, what is the concentration of $FeSCN^{2+}$ in Solution 1A? Enter this concentration in your data table.

3. How does the intensity of the color of the solutions and the absorbance vary with the concentration of the FeSCN^{2+} solution?

Solution #	Volume of 0.002 M Fe ³⁺ (mL)	Volume of 0.002 M SCN ¹⁻ (mL)	Volume of water (mL)	Total Volume (mL)	Initial [Fe ³⁺] (M)	Initial [SCN ¹⁻] (M)	Absat ∼470 nm	Calculated Equilibrium [FeSCN ²⁺] (M)
1B	2.00	4.00	2.00	8.00				
2B	3.00	4.00	1.00	8.00				
3B	4.00	4.00	0.00	8.00				
4B	4.00	3.00	1.00	8.00				
5B	4.00	2.00	2.00	8.00				

Table B: Measuring $[FeSCN^{2+}]$ in Equilibrium Mixtures

4. Calculate the initial concentration of Fe^{3+} in Solution 1B. Show your work; remember to account for dilution. Enter the concentration in your data table.

5. Calculate the initial concentration of SCN⁻ in Solution 1B. Show your work; remember to account for dilution. Enter the concentration in your data table.

6. Using your calibration curve from Part A and your absorbance data from Part B, what is the equilibrium concentration of $FeSCN^{2+}$ in Solution 1B? Show your work.

7. Construct a reaction table for Solution 1B.

	Fe ³⁺ (aq)	+	SCN ⁻ (aq)	→	FeSCN ²⁺ (aq)
initial					
change(∆)					
equilibri um					

8. From the equilibrium concentrations in the reaction table for Solution 1B, calculate the equilibrium constant for the reaction.