Name	Lab Partner	
TA Name	Section	Date

Titration Curves Worksheet

As you work through the steps in the lab procedures, record your experimental values and the results on this worksheet.

 Table A: Titration of KHP

Concentration of KHP solution	М
Volume of KHP solution titrated	mL
Concentration of NaOH solution	М
Calculated V_{eq} of NaOH solution	mL

1. From the values in Data Table A, calculate the theoretical equivalence volume (V_{eq}) for your KHP titration. Record this value in Data Table A.

Volume NaOH added (mL)	pН	Observations]	Volume NaOH added (mL)	pН	Observations
			1			
			1			

Table B: Volume of Titrant Added to KHP vs pH

2a. From your titration curve, what is the experimental V_{eq} for your KHP titration? Label the V_{eq} on each copy of your KHP titration curve. Do not forget to subtract the initial buret reading when determining your V_{eq} .

2b. How do your theoretical and experimental equivalence volumes compare? What is their percent error?

$$\% error = \frac{\text{calculated} - \text{measured}}{\text{calculated}} \ge 100$$

mL of 0.20 M NaOH added	Calculated pH (From prelab)	Measured pH (From titration curve)	% Difference
0.00			
10.00			
15.00			
20.00			
22.00			

Table C: Titration of Na_2CO_3 with HCl

3a. What is the experimental pK_a value for hydrogen phthalate (HP⁻ or HC₈H₄O₄⁻) that you found at the midpoint of your KHP titration curve?

3b. The accepted value for the pK_a of HP⁻ is 5.408. How does this compare to your experimental value? What is their percent difference?

4. How did the endpoint indicated by the phenolphthalein compare to the equivalence point determined by the titration curve?

What conclusion can you make about the need for an indicator in a pH titration?

Table D: Titration of Na_2CO_3

Concentration of Na ₂ CO ₃ solution	М
Volume of Na ₂ CO ₃ solution titrated	mL
Concentration of HCI solution	М
Calculated first Veq of HCI solution	mL
Calculated second V _{eq} of HCI solution	mL

5. From the values in Data Table D, calculate the theoretical first and second equivalence volumes $(V_{eq}$'s) for your Na₂CO₃ titration.

Volume HCI added (mL)	pН	Observations	Volume HCI added (mL)	pН	Observations

Table E: Volume of Titrant Added to Na_2CO_3 vs pH

6a. From your titration curve, what are the experimental first and second V_{eq} 's for your Na₂CO₃ titration? Label both V_{eq} 's on each copy of your Na₂CO₃ titration curve. Do not forget to subtract the initial buret reading when determining your V_{eq} 's.

6b. How do your theoretical and experimental equivalence volumes compare? What are their percent error?

mL of 0.20 M HCI added	Calculated pH (From prelab)	Measured pH (From titration curve)	% Difference (Calculated = actual)
0.00			
5.00			
10.00			
15.00			
20.00			
22.00			

Table F: Calculated vs Measured pH's for Na_2CO_3 Titration

7a. What are the experimental pK_a values for carbonic acid (H₂CO₃) and hydrogen carbonate (HCO₃⁻) that you found at the midpoints of your Na₂CO₃ titration curve?

7b. The accepted values for the pK_a 's of H_2CO_3 and HCO_3^- are 6.352 and 10.329, respectively. How do these compare to your experimental values? What are their percent error?

8. How did the endpoint indicated by the methyl orange compare to the equivalence points determined by the titration curve? What conclusion can you make about the need for an indicator in a pH titration?