
Chapter 11

Applications of Trigonometry

11.1 Applications of Sinusoids

In the same way exponential functions can be used to model a wide variety of phenomena in nature,1

the cosine and sine functions can be used to model their fair share of natural behaviors. In section
10.5, we introduced the concept of a sinusoid as a function which can be written either in the form
C(x) = A cos(ωx+φ)+B for ω > 0 or equivalently, in the form S(x) = A sin(ωx+φ)+B for ω > 0.
At the time, we remained undecided as to which form we preferred, but the time for such indecision
is over. For clarity of exposition we focus on the sine function2 in this section and switch to the
independent variable t, since the applications in this section are time-dependent. We reintroduce
and summarize all of the important facts and definitions about this form of the sinusoid below.

Properties of the Sinusoid S(t) = A sin(ωt+ φ) +B

• The amplitude is |A|

• The angular frequency is ω and the ordinary frequency is f =
ω

2π

• The period is T =
1

f
=

2π

ω

• The phase is φ and the phase shift is −φ
ω

• The vertical shift or baseline is B

Along with knowing these formulas, it is helpful to remember what these quantities mean in context.
The amplitude measures the maximum displacement of the sine wave from its baseline (determined
by the vertical shift), the period is the length of time it takes to complete one cycle of the sinusoid,
the angular frequency tells how many cycles are completed over an interval of length 2π, and the
ordinary frequency measures how many cycles occur per unit of time. The phase indicates what

1See Section 6.5.
2Sine haters can use the co-function identity cos

(
π
2
− θ
)

= sin(θ) to turn all of the sines into cosines.
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angle φ corresponds to t = 0, and the phase shift represents how much of a ‘head start’ the sinusoid
has over the un-shifted sine function. The figure below is repeated from Section 10.5.

amplitude

baseline

period

In Section 10.1.1, we introduced the concept of circular motion and in Section 10.2.1, we developed
formulas for circular motion. Our first foray into sinusoidal motion puts these notions to good use.

Example 11.1.1. Recall from Exercise 55 in Section 10.1 that The Giant Wheel at Cedar Point
is a circle with diameter 128 feet which sits on an 8 foot tall platform making its overall height 136
feet. It completes two revolutions in 2 minutes and 7 seconds. Assuming that the riders are at the
edge of the circle, find a sinusoid which describes the height of the passengers above the ground t
seconds after they pass the point on the wheel closest to the ground.
Solution. We sketch the problem situation below and assume a counter-clockwise rotation.3

O

P

Q

θ

h

3Otherwise, we could just observe the motion of the wheel from the other side.
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We know from the equations given on page 732 in Section 10.2.1 that the y-coordinate for counter-
clockwise motion on a circle of radius r centered at the origin with constant angular velocity
(frequency) ω is given by y = r sin(ωt). Here, t = 0 corresponds to the point (r, 0) so that θ, the
angle measuring the amount of rotation, is in standard position. In our case, the diameter of the
wheel is 128 feet, so the radius is r = 64 feet. Since the wheel completes two revolutions in 2
minutes and 7 seconds (which is 127 seconds) the period T = 1

2(127) = 127
2 seconds. Hence, the

angular frequency is ω = 2π
T = 4π

127 radians per second. Putting these two pieces of information
together, we have that y = 64 sin

(
4π
127 t

)
describes the y-coordinate on the Giant Wheel after t

seconds, assuming it is centered at (0, 0) with t = 0 corresponding to the point Q. In order to find
an expression for h, we take the point O in the figure as the origin. Since the base of the Giant
Wheel ride is 8 feet above the ground and the Giant Wheel itself has a radius of 64 feet, its center
is 72 feet above the ground. To account for this vertical shift upward,4 we add 72 to our formula
for y to obtain the new formula h = y + 72 = 64 sin

(
4π
127 t

)
+ 72. Next, we need to adjust things so

that t = 0 corresponds to the point P instead of the point Q. This is where the phase comes into
play. Geometrically, we need to shift the angle θ in the figure back π

2 radians. From Section 10.2.1,
we know θ = ωt = 4π

127 t, so we (temporarily) write the height in terms of θ as h = 64 sin (θ) + 72.
Subtracting π

2 from θ gives the final answer h(t) = 64 sin
(
θ − π

2

)
+ 72 = 64 sin

(
4π
127 t−

π
2

)
+ 72. We

can check the reasonableness of our answer by graphing y = h(t) over the interval
[
0, 127

2

]
.

t

y

127
2

8

72

136

A few remarks about Example 11.1.1 are in order. First, note that the amplitude of 64 in our
answer corresponds to the radius of the Giant Wheel. This means that passengers on the Giant
Wheel never stray more than 64 feet vertically from the center of the Wheel, which makes sense.
Second, the phase shift of our answer works out to be π/2

4π/127 = 127
8 = 15.875. This represents the

‘time delay’ (in seconds) we introduce by starting the motion at the point P as opposed to the
point Q. Said differently, passengers which ‘start’ at P take 15.875 seconds to ‘catch up’ to the
point Q.

Our next example revisits the daylight data first introduced in Section 2.5, Exercise 6b.

4We are readjusting our ‘baseline’ from y = 0 to y = 72.



882 Applications of Trigonometry

Example 11.1.2. According to the U.S. Naval Observatory website, the number of hours H of
daylight that Fairbanks, Alaska received on the 21st day of the nth month of 2009 is given below.
Here t = 1 represents January 21, 2009, t = 2 represents February 21, 2009, and so on.

Month
Number 1 2 3 4 5 6 7 8 9 10 11 12
Hours of
Daylight 5.8 9.3 12.4 15.9 19.4 21.8 19.4 15.6 12.4 9.1 5.6 3.3

1. Find a sinusoid which models these data and use a graphing utility to graph your answer
along with the data.

2. Compare your answer to part 1 to one obtained using the regression feature of a calculator.

Solution.

1. To get a feel for the data, we plot it below.

t

H

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

10

12

14

16

18

20

22

The data certainly appear sinusoidal,5 but when it comes down to it, fitting a sinusoid to
data manually is not an exact science. We do our best to find the constants A, ω, φ and B
so that the function H(t) = A sin(ωt + φ) + B closely matches the data. We first go after
the vertical shift B whose value determines the baseline. In a typical sinusoid, the value of B
is the average of the maximum and minimum values. So here we take B = 3.3+21.8

2 = 12.55.
Next is the amplitude A which is the displacement from the baseline to the maximum (and
minimum) values. We find A = 21.8 − 12.55 = 12.55 − 3.3 = 9.25. At this point, we have
H(t) = 9.25 sin(ωt + φ) + 12.55. Next, we go after the angular frequency ω. Since the data
collected is over the span of a year (12 months), we take the period T = 12 months.6 This

5Okay, it appears to be the ‘∧’ shape we saw in some of the graphs in Section 2.2. Just humor us.
6Even though the data collected lies in the interval [1, 12], which has a length of 11, we need to think of the data

point at t = 1 as a representative sample of the amount of daylight for every day in January. That is, it represents
H(t) over the interval [0, 1]. Similarly, t = 2 is a sample of H(t) over [1, 2], and so forth.

http://aa.usno.navy.mil/data/docs/RS_OneYear.php
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means ω = 2π
T = 2π

12 = π
6 . The last quantity to find is the phase φ. Unlike the previous

example, it is easier in this case to find the phase shift −φ
ω . Since we picked A > 0, the phase

shift corresponds to the first value of t with H(t) = 12.55 (the baseline value).7 Here, we
choose t = 3, since its corresponding H value of 12.4 is closer to 12.55 than the next value,
15.9, which corresponds to t = 4. Hence, −φ

ω = 3, so φ = −3ω = −3
(
π
6

)
= −π

2 . We have
H(t) = 9.25 sin

(
π
6 t−

π
2

)
+ 12.55. Below is a graph of our data with the curve y = H(t).

2. Using the ‘SinReg’ command, we graph the calculator’s regression below.

While both models seem to be reasonable fits to the data, the calculator model is possibly
the better fit. The calculator does not give us an r2 value like it did for linear regressions
in Section 2.5, nor does it give us an R2 value like it did for quadratic, cubic and quartic
regressions as in Section 3.1. The reason for this, much like the reason for the absence of R2

for the logistic model in Section 6.5, is beyond the scope of this course. We’ll just have to
use our own good judgment when choosing the best sinusoid model.

11.1.1 Harmonic Motion

One of the major applications of sinusoids in Science and Engineering is the study of harmonic
motion. The equations for harmonic motion can be used to describe a wide range of phenomena,
from the motion of an object on a spring, to the response of an electronic circuit. In this subsection,
we restrict our attention to modeling a simple spring system. Before we jump into the Mathematics,
there are some Physics terms and concepts we need to discuss. In Physics, ‘mass’ is defined as a
measure of an object’s resistance to straight-line motion whereas ‘weight’ is the amount of force
(pull) gravity exerts on an object. An object’s mass cannot change,8 while its weight could change.

7See the figure on page 880.
8Well, assuming the object isn’t subjected to relativistic speeds . . .
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An object which weighs 6 pounds on the surface of the Earth would weigh 1 pound on the surface
of the Moon, but its mass is the same in both places. In the English system of units, ‘pounds’ (lbs.)
is a measure of force (weight), and the corresponding unit of mass is the ‘slug’. In the SI system,
the unit of force is ‘Newtons’ (N) and the associated unit of mass is the ‘kilogram’ (kg). We convert
between mass and weight using the formula9 w = mg. Here, w is the weight of the object, m is the
mass and g is the acceleration due to gravity. In the English system, g = 32 feet

second2 , and in the SI

system, g = 9.8 meters
second2 . Hence, on Earth a mass of 1 slug weighs 32 lbs. and a mass of 1 kg weighs

9.8 N.10 Suppose we attach an object with mass m to a spring as depicted below. The weight of
the object will stretch the spring. The system is said to be in ‘equilibrium’ when the weight of the
object is perfectly balanced with the restorative force of the spring. How far the spring stretches
to reach equilibrium depends on the spring’s ‘spring constant’. Usually denoted by the letter k,
the spring constant relates the force F applied to the spring to the amount d the spring stretches
in accordance with Hooke’s Law11 F = kd. If the object is released above or below the equilibrium
position, or if the object is released with an upward or downward velocity, the object will bounce
up and down on the end of the spring until some external force stops it. If we let x(t) denote the
object’s displacement from the equilibrium position at time t, then x(t) = 0 means the object is at
the equilibrium position, x(t) < 0 means the object is above the equilibrium position, and x(t) > 0
means the object is below the equilibrium position. The function x(t) is called the ‘equation of
motion’ of the object.12

x(t) = 0 at the x(t) < 0 above the x(t) > 0 below the
equilibrium position equilibrium position equilibrium position

If we ignore all other influences on the system except gravity and the spring force, then Physics
tells us that gravity and the spring force will battle each other forever and the object will oscillate
indefinitely. In this case, we describe the motion as ‘free’ (meaning there is no external force causing
the motion) and ‘undamped’ (meaning we ignore friction caused by surrounding medium, which
in our case is air). The following theorem, which comes from Differential Equations, gives x(t) as
a function of the mass m of the object, the spring constant k, the initial displacement x0 of the

9This is a consequence of Newton’s Second Law of Motion F = ma where F is force, m is mass and a is acceleration.
In our present setting, the force involved is weight which is caused by the acceleration due to gravity.

10Note that 1 pound = 1 slug foot
second2 and 1 Newton = 1 kg meter

second2 .
11Look familiar? We saw Hooke’s Law in Section 4.3.1.
12To keep units compatible, if we are using the English system, we use feet (ft.) to measure displacement. If we

are in the SI system, we measure displacement in meters (m). Time is always measured in seconds (s).

http://en.wikipedia.org/wiki/Hooke's_law
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object and initial velocity v0 of the object. As with x(t), x0 = 0 means the object is released from
the equilibrium position, x0 < 0 means the object is released above the equilibrium position and
x0 > 0 means the object is released below the equilibrium position. As far as the initial velocity v0

is concerned, v0 = 0 means the object is released ‘from rest,’ v0 < 0 means the object is heading
upwards and v0 > 0 means the object is heading downwards.13

Theorem 11.1. Equation for Free Undamped Harmonic Motion: Suppose an object of
mass m is suspended from a spring with spring constant k. If the initial displacement from the
equilibrium position is x0 and the initial velocity of the object is v0, then the displacement x
from the equilibrium position at time t is given by x(t) = A sin(ωt+ φ) where

• ω =

√
k

m
and A =

√
x2

0 +
(v0

ω

)2

• A sin(φ) = x0 and Aω cos(φ) = v0.

It is a great exercise in ‘dimensional analysis’ to verify that the formulas given in Theorem 11.1
work out so that ω has units 1

s and A has units ft. or m, depending on which system we choose.

Example 11.1.3. Suppose an object weighing 64 pounds stretches a spring 8 feet.

1. If the object is attached to the spring and released 3 feet below the equilibrium position from
rest, find the equation of motion of the object, x(t). When does the object first pass through
the equilibrium position? Is the object heading upwards or downwards at this instant?

2. If the object is attached to the spring and released 3 feet below the equilibrium position with
an upward velocity of 8 feet per second, find the equation of motion of the object, x(t). What
is the longest distance the object travels above the equilibrium position? When does this first
happen? Confirm your result using a graphing utility.

Solution. In order to use the formulas in Theorem 11.1, we first need to determine the spring
constant k and the mass of the object m. To find k, we use Hooke’s Law F = kd. We know the
object weighs 64 lbs. and stretches the spring 8 ft.. Using F = 64 and d = 8, we get 64 = k · 8, or
k = 8 lbs.

ft. . To find m, we use w = mg with w = 64 lbs. and g = 32 ft.
s2

. We get m = 2 slugs. We can
now proceed to apply Theorem 11.1.

1. With k = 8 and m = 2, we get ω =
√

k
m =

√
8
2 = 2. We are told that the object is released

3 feet below the equilibrium position ‘from rest.’ This means x0 = 3 and v0 = 0. Therefore,

A =
√
x2

0 +
(
v0
ω

)2
=
√

32 + 02 = 3. To determine the phase φ, we have A sin(φ) = x0,

which in this case gives 3 sin(φ) = 3 so sin(φ) = 1. Only φ = π
2 and angles coterminal to it

13The sign conventions here are carried over from Physics. If not for the spring, the object would fall towards the
ground, which is the ‘natural’ or ‘positive’ direction. Since the spring force acts in direct opposition to gravity, any
movement upwards is considered ‘negative’.
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satisfy this condition, so we pick14 the phase to be φ = π
2 . Hence, the equation of motion

is x(t) = 3 sin
(
2t+ π

2

)
. To find when the object passes through the equilibrium position we

solve x(t) = 3 sin
(
2t+ π

2

)
= 0. Going through the usual analysis we find t = −π

4 + π
2k for

integers k. Since we are interested in the first time the object passes through the equilibrium
position, we look for the smallest positive t value which in this case is t = π

4 ≈ 0.78 seconds
after the start of the motion. Common sense suggests that if we release the object below the
equilibrium position, the object should be traveling upwards when it first passes through it.
To check this answer, we graph one cycle of x(t). Since our applied domain in this situation
is t ≥ 0, and the period of x(t) is T = 2π

ω = 2π
2 = π, we graph x(t) over the interval [0, π].

Remembering that x(t) > 0 means the object is below the equilibrium position and x(t) < 0
means the object is above the equilibrium position, the fact our graph is crossing through the
t-axis from positive x to negative x at t = π

4 confirms our answer.

2. The only difference between this problem and the previous problem is that we now release
the object with an upward velocity of 8 ft

s . We still have ω = 2 and x0 = 3, but now
we have v0 = −8, the negative indicating the velocity is directed upwards. Here, we get

A =
√
x2

0 +
(
v0
ω

)2
=
√

32 + (−4)2 = 5. From A sin(φ) = x0, we get 5 sin(φ) = 3 which gives

sin(φ) = 3
5 . From Aω cos(φ) = v0, we get 10 cos(φ) = −8, or cos(φ) = −4

5 . This means
that φ is a Quadrant II angle which we can describe in terms of either arcsine or arccosine.
Since x(t) is expressed in terms of sine, we choose to express φ = π − arcsin

(
3
5

)
. Hence,

x(t) = 5 sin
(
2t+

[
π − arcsin

(
3
5

)])
. Since the amplitude of x(t) is 5, the object will travel

at most 5 feet above the equilibrium position. To find when this happens, we solve the
equation x(t) = 5 sin

(
2t+

[
π − arcsin

(
3
5

)])
= −5, the negative once again signifying that

the object is above the equilibrium position. Going through the usual machinations, we get
t = 1

2 arcsin
(

3
5

)
+ π

4 + πk for integers k. The smallest of these values occurs when k = 0,
that is, t = 1

2 arcsin
(

3
5

)
+ π

4 ≈ 1.107 seconds after the start of the motion. To check our
answer using the calculator, we graph y = 5 sin

(
2x+

[
π − arcsin

(
3
5

)])
on a graphing utility

and confirm the coordinates of the first relative minimum to be approximately (1.107,−5).

t

x

π
4

π
2

3π
4

π

−3

−2

−1

1

2

3

x(t) = 3 sin
(
2t+ π

2

)
y = 5 sin

(
2x+

[
π − arcsin

(
3
5

)])
It is possible, though beyond the scope of this course, to model the effects of friction and other
external forces acting on the system.15 While we may not have the Physics and Calculus background

14For confirmation, we note that Aω cos(φ) = v0, which in this case reduces to 6 cos(φ) = 0.
15Take a good Differential Equations class to see this!
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to derive equations of motion for these scenarios, we can certainly analyze them. We examine three
cases in the following example.

Example 11.1.4.

1. Write x(t) = 5e−t/5 cos(t) + 5e−t/5
√

3 sin(t) in the form x(t) = A(t) sin(ωt + φ). Graph x(t)
using a graphing utility.

2. Write x(t) = (t+ 3)
√

2 cos(2t) + (t+ 3)
√

2 sin(2t) in the form x(t) = A(t) sin(ωt+ φ). Graph
x(t) using a graphing utility.

3. Find the period of x(t) = 5 sin(6t)− 5 sin (8t). Graph x(t) using a graphing utility.

Solution.

1. We start rewriting x(t) = 5e−t/5 cos(t) + 5e−t/5
√

3 sin(t) by factoring out 5e−t/5 from both
terms to get x(t) = 5e−t/5

(
cos(t) +

√
3 sin(t)

)
. We convert what’s left in parentheses to

the required form using the formulas introduced in Exercise 36 from Section 10.5. We find(
cos(t) +

√
3 sin(t)

)
= 2 sin

(
t+ π

3

)
so that x(t) = 10e−t/5 sin

(
t+ π

3

)
. Graphing this on the

calculator as y = 10e−x/5 sin
(
x+ π

3

)
reveals some interesting behavior. The sinusoidal nature

continues indefinitely, but it is being attenuated. In the sinusoid A sin(ωx+φ), the coefficient
A of the sine function is the amplitude. In the case of y = 10e−x/5 sin

(
x+ π

3

)
, we can think

of the function A(x) = 10e−x/5 as the amplitude. As x→∞, 10e−x/5 → 0 which means the
amplitude continues to shrink towards zero. Indeed, if we graph y = ±10e−x/5 along with
y = 10e−x/5 sin

(
x+ π

3

)
, we see this attenuation taking place. This equation corresponds to

the motion of an object on a spring where there is a slight force which acts to ‘damp’, or slow
the motion. An example of this kind of force would be the friction of the object against the
air. In this model, the object oscillates forever, but with smaller and smaller amplitude.

y = 10e−x/5 sin
(
x+ π

3

)
y = 10e−x/5 sin

(
x+ π

3

)
, y = ±10e−x/5

2. Proceeding as in the first example, we factor out (t + 3)
√

2 from each term in the function
x(t) = (t+ 3)

√
2 cos(2t) + (t+ 3)

√
2 sin(2t) to get x(t) = (t+ 3)

√
2(cos(2t) + sin(2t)). We find

(cos(2t) + sin(2t)) =
√

2 sin
(
2t+ π

4

)
, so x(t) = 2(t + 3) sin

(
2t+ π

4

)
. Graphing this on the

calculator as y = 2(x + 3) sin
(
2x+ π

4

)
, we find the sinusoid’s amplitude growing. Since our

amplitude function here is A(x) = 2(x+ 3) = 2x+ 6, which continues to grow without bound
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as x → ∞, this is hardly surprising. The phenomenon illustrated here is ‘forced’ motion.
That is, we imagine that the entire apparatus on which the spring is attached is oscillating
as well. In this case, we are witnessing a ‘resonance’ effect – the frequency of the external
oscillation matches the frequency of the motion of the object on the spring.16

y = 2(x+ 3) sin
(
2x+ π

4

)
y = 2(x+ 3) sin

(
2x+ π

4

)
y = ±2(x+ 3)

3. Last, but not least, we come to x(t) = 5 sin(6t)−5 sin(8t). To find the period of this function,
we need to determine the length of the smallest interval on which both f(t) = 5 sin(6t) and
g(t) = 5 sin(8t) complete a whole number of cycles. To do this, we take the ratio of their
frequencies and reduce to lowest terms: 6

8 = 3
4 . This tells us that for every 3 cycles f makes,

g makes 4. In other words, the period of x(t) is three times the period of f(t) (which is
four times the period of g(t)), or π. We graph y = 5 sin(6x) − 5 sin(8x) over [0, π] on the
calculator to check this. This equation of motion also results from ‘forced’ motion, but here
the frequency of the external oscillation is different than that of the object on the spring.
Since the sinusoids here have different frequencies, they are ‘out of sync’ and do not amplify
each other as in the previous example. Taking things a step further, we can use a sum to
product identity to rewrite x(t) = 5 sin(6t)− 5 sin(8t) as x(t) = −10 sin(t) cos(7t). The lower
frequency factor in this expression, −10 sin(t), plays an interesting role in the graph of x(t).
Below we graph y = 5 sin(6x)− 5 sin(8x) and y = ±10 sin(x) over [0, 2π]. This is an example
of the ‘beat’ phenomena, and the curious reader is invited to explore this concept as well.17

y = 5 sin(6x)− 5 sin(8x) over [0, π] y = 5 sin(6x)− 5 sin(8x) and
y = ±10 sin(x) over [0, 2π]

16The reader is invited to investigate the destructive implications of resonance.
17A good place to start is this article on beats.

http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Beat_(acoustics)

