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In Section 8.1 we introduced Gaussian Elimination as a means of transforming a system of linear
equations into triangular form with the ultimate goal of producing an equivalent system of linear
equations which is easier to solve. If we take a step back and study the process, we see that all of
our moves are determined entirely by the coefficients of the variables involved, and not the variables
themselves. Much the same thing happened when we studied long division in Section 3.2. Just as
we developed synthetic division to streamline that process, in this section, we introduce a similar
bookkeeping device to help us solve systems of linear equations. To that end, we define a matrix
as a rectangular array of real numbers. We typically enclose matrices with square brackets, ‘[’ and
‘], and we size matrices by the number of rows and columns they have. For example, the size
(sometimes called the dimension) of
3 0 -1
[ 2 =5 10 }

is 2 x 3 because it has 2 rows and 3 columns. The individual numbers in a matrix are called its
entries and are usually labeled with double subscripts: the first tells which row the element is in
and the second tells which column it is in. The rows are numbered from top to bottom and the
columns are numbered from left to right. Matrices themselves are usually denoted by uppercase
letters (A, B, C, etc.) while their entries are usually denoted by the corresponding letter. So, for
instance, if we have

3 0 -1
A‘[z -5 10]

then a;;, = 3, a1, =0, a;5 = —1, ay; = 2, a,, = —5, and a,; = 10. We shall explore matrices as
mathematical objects with their own algebra in Section 8.3 and introduce them here solely as a
bookkeeping device. Consider the system of linear equations from number 2 in Example 8.1.2

(E1) 22+43y—z = 1
(E2) 10z -2 = 2
(E3) 4x—9y+2z = 5

We encode this system into a matrix by assigning each equation to a corresponding row. Within
that row, each variable and the constant gets its own column, and to separate the variables on the
left hand side of the equation from the constants on the right hand side, we use a vertical bar, |.
Note that in E2, since y is not present, we record its coefficient as 0. The matrix associated with
this system is

T Yy z C
(El)— [ 2 3 —1]1
(E2)— |10 0 —1]2
(E3)— | 4 -9 2|5
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This matrix is called an augmented matrix because the column containing the constants is
appended to the matrix containing the coefficients.! To solve this system, we can use the same
kind operations on the rows of the matrix that we performed on the equations of the system. More
specifically, we have the following analog of Theorem 8.1 below.

Theorem 8.2. Row Operations: Given an augmented matrix for a system of linear equations,
the following row operations produce an augmented matrix which corresponds to an equivalent
system of linear equations.

e Interchange any two rows.

e Replace a row with a nonzero multiple of itself.¢

e Replace a row with itself plus a nonzero multiple of another row.’

“That is, the row obtained by multiplying each entry in the row by the same nonzero number.
"Where we add entries in corresponding columns.

As a demonstration of the moves in Theorem 8.2, we revisit some of the steps that were used in
solving the systems of linear equations in Example 8.1.2 of Section 8.1. The reader is encouraged to
perform the indicated operations on the rows of the augmented matrix to see that the machinations
are identical to what is done to the coefficients of the variables in the equations. We first see a
demonstration of switching two rows using the first step of part 1 in Example 8.1.2.

(E1) 3xr—y+z = 3 _ (E1) r—y+z = 5
(B2) 22 —4dy+3z = 16 b BlandB3 ) (poy 9y —dy+3: = 16
(E3) r—y+z = b (E3) 3xr—y+z = 3

3 —1 1] 3 1 -1 1] 5

9 _4 3116 Switch R1 and R3 9 _4 3116

1 -1 11 5 3 —1 11 3

Next, we have a demonstration of replacing a row with a nonzero multiple of itself using the first
step of part 3 in Example 8.1.2.

(El) St @ tr, = Replace E1 with %El (El) Ty + %mQ + %.@4 = 2
(E2) 2[,51 + xg — :1:3 = 4 (EQ) 2I1 + IQ — .5[?3 = 4
(E3) zy—3x3—22, = 0 (E3) xy—3x5—21, = 0
3 1 0 1|6 . 1+ 0 12
Replace R1 with §R1 3 3
2 1 -1 04 2 1 -1 04
0 1 -3 =210 0 1 -3 =210

Finally, we have an example of replacing a row with itself plus a multiple of another row using the
second step from part 2 in Example 8.1.2.

We shall study the coefficient and constant matrices separately in Section 8.3.
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(E1) z+3y—1z = 3 (E1) z+3y—3=2 :
Replace E2 with —10F1 + E2
(EQ) W0z =z =2 Rep lace E3V:vith —4FE1 + E3 ’ (E2> _15y taz = -3
(E3) 4z —-9y+22z = 5 P (E3) —15y+4z = 3
1 3 _11 3 1 1
2 2 2 R 2 2 2
10 0 —112 Replace RZ‘ lech 10R1 + Pt2 0 —15 1| -3
4 _9 21 5 Replace R3 with —4R1 4+ R3 0 —15 4 3

The matrix equivalent of ‘triangular form’ is row echelon form. The reader is encouraged to
refer to Definition 8.3 for comparison. Note that the analog of ‘leading variable’ of an equation
is ‘leading entry’ of a row. Specifically, the first nonzero entry (if it exists) in a row is called the
leading entry of that row.

Definition 8.4. A matrix is said to be in row echelon form provided all of the following
conditions hold:

1. The first nonzero entry in each row is 1.

2. The leading 1 of a given row must be to the right of the leading 1 of the row above it.

3. Any row of all zeros cannot be placed above a row with nonzero entries.

To solve a system of a linear equations using an augmented matrix, we encode the system into an
augmented matrix and apply Gaussian Elimination to the rows to get the matrix into row-echelon
form. We then decode the matrix and back substitute. The next example illustrates this nicely.

Example 8.2.1. Use an augmented matrix to transform the following system of linear equations
into triangular form. Solve the system.

dJr—y+z = 8
z+2y—z = 4
2v4+3y—4z = 10

Solution. We first encode the system into an augmented matrix.

3r—y+z = 8 A . 3 -1 1] 8
T+ 2y o, = 4 Encode into the matrix 1 9 _1 4
20+ 3y —4z = 10 2 3 —4110

Thinking back to Gaussian Elimination at an equations level, our first order of business is to get =
in E1 with a coefficient of 1. At the matrix level, this means getting a leading 1 in R1. This is in
accordance with the first criteria in Definition 8.4. To that end, we interchange R1 and R2.

3 -1 1|8 . 1 2 -1 4
1 9 _q 4 Switch R1 and R2 3 _1 1 8
2 3 —4110 2 3 —4110
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Our next step is to eliminate the z’s from E2 and EF3. From a matrix standpoint, this means we
need 0’s below the leading 1 in R1. This guarantees the leading 1 in R2 will be to the right of the
leading 1 in R1 in accordance with the second requirement of Definition 8.4.

b2 174 Replace R2 with —3R1 + R2 12 -1 4
3 -1 1| 8 eplace T2 with —9H1 + 0 -7 4|4

9 3 _4/10 Replace R3 with —2R1 + R3 0 -1 -2 9

Now we repeat the above process for the variable y which means we need to get the leading entry
in R2 to be 1.

1 2 -1 4 ) 1 2 —-11|4
0 —7 Al —4 Replace R2 with —%R2 0 1 _% %
0 -1 -2 2 0 -1 —-2|2

To guarantee the leading 1 in R3 is to the right of the leading 1 in R2, we get a 0 in the second
column of R3.

1 2 —-1]4 , 1 -1] 4
0 1 4|4 Replace R3 with R2 + R3 4 4
T 7 7
0 -1 —-2|2 _ 18| 18
0 7 7
Finally, we get the leading entry in R3 to be 1.
1 2 -1 4 _
4 4 Replace R3 with 71—781%3 1 2 i j%
0 1 —7|7 0 1 —z7] 7
0o 0 — % 178 0 0 1]-1
Decoding from the matrix gives a system in triangular form
1 2 -1] 4 ) T+2y—2z = 4
0 1 - 4 4 Decode from the matrix _ éz _ 4
7 7 7 7
0 O -1 z = -1

Wegetz=-1,y=32z+2=2(-1)+2=0andz=-2y+z+4=-20)+(-1)+4=3fora
final answer of (3,0, —1). We leave it to the reader to check. O

As part of Gaussian Elimination, we used row operations to obtain 0’s beneath each leading 1 to
put the matrix into row echelon form. If we also require that 0’s are the only numbers above a
leading 1, we have what is known as the reduced row echelon form of the matrix.

Definition 8.5. A matrix is said to be in reduced row echelon form provided both of the
following conditions hold:

1. The matrix is in row echelon form.

2. The leading 1s are the only nonzero entry in their respective columns.
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Of what significance is the reduced row echelon form of a matrix? To illustrate, let’s take the row
echelon form from Example 8.2.1 and perform the necessary steps to put into reduced row echelon
form. We start by using the leading 1 in R3 to zero out the numbers in the rows above it.

1 2 -1 4 ) 1 2 0] 3
0 1 _% % Replace R1 V&.,lth 4R3 + R1 01 0 0
0 0 11 -1 Replace R2 with = R3 + R2 00 1/|-1
Finally, we take care of the 2 in R1 above the leading 1 in R2.
120 Replace R1 with —2R2 + R1 100 3
010 0 cpace ML WA Y 01 0| 0
0 0 1|-1 0 0 1|-1

To our surprise and delight, when we decode this matrix, we obtain the solution instantly without
having to deal with any back-substitution at all.

1 00| 3 f . x = 3
010 0 Decode from the matrix y = 0
00 1]-1 z = -1

Note that in the previous discussion, we could have started with R2 and used it to get a zero above
its leading 1 and then done the same for the leading 1 in R3. By starting with R3, however, we get
more zeros first, and the more zeros there are, the faster the remaining calculations will be.? It is
also worth noting that while a matrix has several® row echelon forms, it has only one reduced row
echelon form. The process by which we have put a matrix into reduced row echelon form is called
Gauss-Jordan Elimination.

Example 8.2.2. Solve the following system using an augmented matrix. Use Gauss-Jordan Elim-
ination to put the augmented matrix into reduced row echelon form.

To — 3«%‘1 + Ty = 2
2.1;1 + 4./1:3 - 5
dry —x, = 3

Solution. We first encode the system into a matrix. (Pay attention to the subscripts!)

Ty — 3.%'1 + ry = 2 . . —3 1 0 1 2
21‘1 + 43}3 - 5 Encode into the matrix 9 0 4 0l5
4.1:2 — Ty = 3 0 4 0 —1 3

Next, we get a leading 1 in the first column of R1.

1 1 2

—3 1 0 112 Replace R1 with —%Rl 1 3 0 3173
2 0 4 015 2 0 4 0 )
0 4 0 -11|3 0 4 0 -1 3

2Carl also finds starting with R3 to be more symmetric, in a purely poetic way.
3infinite, in fact
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Now we eliminate the nonzero entry below our leading 1.

1 -1 o —1|-2 1 -3 0 —3|-3
3 3 3 ith —
9 0 4 0 5 Replace R2 with —2R1 + R2 0 % 4 % 1379
o 4 0 -1] 3 0 4 0 —-1| 3
We proceed to get a leading 1 in R2.
1 1 12 1 1 _1_2
g 0 g 13 Replace R2 with %RQ 3 0 3 18
o 5 4 3| 5 > 0 1 6 1| 3
0o 4 0 -1 3 0o 4 0 -1 3
We now zero out the entry below the leading 1 in R2
1 -1 0 —1|_-2 1 -1 0 —1| 2
3 3 3 . 3 3 3
0 1 6 1 129 Replace R3 with —4R2 + R3 0 1 6 1 129
0o 4 0 -1 3 0 0 —24 —-5|-35
Next, it’s time for a leading 1 in R3
1 1 0 —1| 2 1 -1 o —1]|_2
3 3 3 . 3 3 3
0 1 6 1 % Replace R3 with —-L R3 0 1 6 1 %
5 | 35
0 0 -24 —-5|-35 0 0 1 35| 57

The matrix is now in row echelon form. To get the reduced row echelon form, we start with the
last leading 1 we produced and work to get 0’s above it.

1 1 o —1|_2 1 -1 o —L1]|_2
3 3 3 _ 3 3 3
0 1 6 1 % Replace R2 with —6R3 + R2 0 1 0 _% %
5 35 5 35
0 0 I 5| 52 0 0 1 5| 52
Lastly, we get a 0 above the leading 1 of R2.
1 -1 0 —1|_-2 0 0 -3 | -5
3 ‘(15 % Replace R1 with %RQ + R1 1% 1%
A v 1 2| &
0 0 1 | 52 0 0 1 > 51
At last, we decode to get
1 0 0 —3|-2 T, — o, = —3
0 1 0 1% 1% Decode from the matrix ' 1% ! 1%
1 1 Ta — 4Ta 1
5 35 5 _ 35
We have that x, is free and we assign it the parameter t. We obtain z; = t + ;’Z, = %t + %,
and x, = 5t—— Our solution 18{( t—ﬁ,it—i—f ——t—i—gi,t) —oo<t<oo} and leave it to

the reader to check O
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Like all good algorithms, putting a matrix in row echelon or reduced row echelon form can easily
be programmed into a calculator, and, doubtless, your graphing calculator has such a feature. We
use this in our next example.

Example 8.2.3. Find the quadratic function passing through the points (—1,3), (2,4), (5, —2).

Solution. According to Definition 2.5, a quadratic function has the form f(z) = az?+ bz +c where
a # 0. Our goal is to find a, b and ¢ so that the three given points are on the graph of f. If (—1,3)
is on the graph of f, then f(—1) = 3, or a(—1)? + b(—1) + ¢ = 3 which reduces to a — b+ ¢ = 3,
an honest-to-goodness linear equation with the variables a, b and c. Since the point (2,4) is also
on the graph of f, then f(2) = 4 which gives us the equation 4a + 2b + ¢ = 4. Lastly, the point
(5,—2) is on the graph of f gives us 25a + 5b+ ¢ = —2. Putting these together, we obtain a system
of three linear equations. Encoding this into an augmented matrix produces

a—b+c = 3 . . 1 -1 1] 3
da+2b+c = 4 Encode into the matrix 4 9 1 4
25a+bb+c = -2 25 5} 1] -2

Using a calculator,* we find a = 783 b= 13 and ¢ = 37 Hence, the one and only quadratic Wthh
fits the bill is f(z) = —18562 + 8$+ 97 To Verlfy this analytlcally, we see that f(—1) =3, f(2) =
and f(5) = —2. We can use the calculator to check our solution as well by plotting the three data

points and the function f.

ref ¢ [A] »rFrac [
[[1 B B -7-13] _
B 1 8 13~-18] [
B A1 379 11 [

The graph of f(x
with the points (—

4We’ve tortured you enough already with fractions in this exposition!



