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9.2 Summation Notation

In the previous section, we introduced sequences and now we shall present notation and theorems
concerning the sum of terms of a sequence. We begin with a definition, which, while intimidating,
is meant to make our lives easier.

Definition 9.3. Summation Notation: Given a sequence {an}∞n=k and numbers m and p
satisfying k ≤ m ≤ p, the summation from m to p of the sequence {an} is written

p∑
n=m

an = am + am+1 + . . .+ ap

The variable n is called the index of summation. The number m is called the lower limit of
summation while the number p is called the upper limit of summation.

In English, Definition 9.3 is simply defining a short-hand notation for adding up the terms of the
sequence {an}∞n=k from am through ap. The symbol Σ is the capital Greek letter sigma and is
shorthand for ‘sum’. The lower and upper limits of the summation tells us which term to start
with and which term to end with, respectively. For example, using the sequence an = 2n − 1 for
n ≥ 1, we can write the sum a3 + a4 + a5 + a6 as

6∑
n=3

(2n− 1) = (2(3)− 1) + (2(4)− 1) + (2(5)− 1) + (2(6)− 1)

= 5 + 7 + 9 + 11
= 32

The index variable is considered a ‘dummy variable’ in the sense that it may be changed to any
letter without affecting the value of the summation. For instance,

6∑
n=3

(2n− 1) =
6∑

k=3

(2k − 1) =
6∑
j=3

(2j − 1)

One place you may encounter summation notation is in mathematical definitions. For example,
summation notation allows us to define polynomials as functions of the form

f(x) =
n∑
k=0

akx
k

for real numbers ak, k = 0, 1, . . . n. The reader is invited to compare this with what is given in
Definition 3.1. Summation notation is particularly useful when talking about matrix operations.
For example, we can write the product of the ith row Ri of a matrix A = [aij ]m×n and the jth

column Cj of a matrix B = [bij ]n×r as

Ri · Cj =

n∑
k=1

aikbkj
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Again, the reader is encouraged to write out the sum and compare it to Definition 8.9. Our next
example gives us practice with this new notation.

Example 9.2.1.

1. Find the following sums.

(a)
4∑

k=1

13

100k
(b)

4∑
n=0

n!

2
(c)

5∑
n=1

(−1)n+1

n
(x− 1)n

2. Write the following sums using summation notation.

(a) 1 + 3 + 5 + . . .+ 117

(b) 1− 1

2
+

1

3
− 1

4
+− . . .+ 1

117

(c) 0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9

Solution.

1. (a) We substitute k = 1 into the formula 13
100k

and add successive terms until we reach k = 4.

4∑
k=1

13

100k
=

13

1001
+

13

1002
+

13

1003
+

13

1004

= 0.13 + 0.0013 + 0.000013 + 0.00000013
= 0.13131313

(b) Proceeding as in (a), we replace every occurrence of n with the values 0 through 4. We
recall the factorials, n! as defined in number Example 9.1.1, number 6 and get:

4∑
n=0

n!

2
=

0!

2
+

1!

2
+

2!

2
+

3!

2
=

4!

2

=
1

2
+

1

2
+

2 · 1
2

+
3 · 2 · 1

2
+

4 · 3 · 2 · 1
2

=
1

2
+

1

2
+ 1 + 3 + 12

= 17

(c) We proceed as before, replacing the index n, but not the variable x, with the values 1
through 5 and adding the resulting terms.
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5∑
n=1

(−1)n+1

n
(x− 1)n =

(−1)1+1

1
(x− 1)1 +

(−1)2+1

2
(x− 1)2 +

(−1)3+1

3
(x− 1)3

+
(−1)1+4

4
(x− 1)4 +

(−1)1+5

5
(x− 1)5

= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+

(x− 1)5

5

2. The key to writing these sums with summation notation is to find the pattern of the terms.
To that end, we make good use of the techniques presented in Section 9.1.

(a) The terms of the sum 1, 3, 5, etc., form an arithmetic sequence with first term a = 1
and common difference d = 2. We get a formula for the nth term of the sequence using
Equation 9.1 to get an = 1+(n−1)2 = 2n−1, n ≥ 1. At this stage, we have the formula
for the terms, namely 2n − 1, and the lower limit of the summation, n = 1. To finish
the problem, we need to determine the upper limit of the summation. In other words,
we need to determine which value of n produces the term 117. Setting an = 117, we get
2n− 1 = 117 or n = 59. Our final answer is

1 + 3 + 5 + . . .+ 117 =

59∑
n=1

(2n− 1)

(b) We rewrite all of the terms as fractions, the subtraction as addition, and associate the
negatives ‘−’ with the numerators to get

1

1
+
−1

2
+

1

3
+
−1

4
+ . . .+

1

117

The numerators, 1, −1, etc. can be described by the geometric sequence1 cn = (−1)n−1

for n ≥ 1, while the denominators are given by the arithmetic sequence2 dn = n for

n ≥ 1. Hence, we get the formula an = (−1)n−1

n for our terms, and we find the lower and
upper limits of summation to be n = 1 and n = 117, respectively. Thus

1− 1

2
+

1

3
− 1

4
+− . . .+ 1

117
=

117∑
n=1

(−1)n−1

n

(c) Thanks to Example 9.1.3, we know that one formula for the nth term is an = 9
10n for

n ≥ 1. This gives us a formula for the summation as well as a lower limit of summation.
To determine the upper limit of summation, we note that to produce the n− 1 zeros to
the right of the decimal point before the 9, we need a denominator of 10n. Hence, n is

1This is indeed a geometric sequence with first term a = 1 and common ratio r = −1.
2It is an arithmetic sequence with first term a = 1 and common difference d = 1.
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the upper limit of summation. Since n is used in the limits of the summation, we need
to choose a different letter for the index of summation.3 We choose k and get

0.9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =

n∑
k=1

9

10k

The following theorem presents some general properties of summation notation. While we shall not
have much need of these properties in Algebra, they do play a great role in Calculus. Moreover,
there is much to be learned by thinking about why the properties hold. We invite the reader to
prove these results. To get started, remember, “When in doubt, write it out!”

Theorem 9.1. Properties of Summation Notation: Suppose {an} and {bn} are sequences
so that the following sums are defined.

•
p∑

n=m

(an ± bn) =

p∑
n=m

an ±
p∑

n=m

bn

•
p∑

n=m

c an = c

p∑
n=m

an, for any real number c.

•
p∑

n=m

an =

j∑
n=m

an +

p∑
n=j+1

an, for any natural number m ≤ j < j + 1 ≤ p.

•
p∑

n=m

an =

p+r∑
n=m+r

an−r, for any whole number r.

We now turn our attention to the sums involving arithmetic and geometric sequences. Given an
arithmetic sequence ak = a+ (k − 1)d for k ≥ 1, we let S denote the sum of the first n terms. To
derive a formula for S, we write it out in two different ways

S = a + (a+ d) + . . . + (a+ (n− 2)d) + (a+ (n− 1)d)
S = (a+ (n− 1)d) + (a+ (n− 2)d) + . . . + (a+ d) + a

If we add these two equations and combine the terms which are aligned vertically, we get

2S = (2a+ (n− 1)d) + (2a+ (n− 1)d) + . . .+ (2a+ (n− 1)d) + (2a+ (n− 1)d)

The right hand side of this equation contains n terms, all of which are equal to (2a+ (n− 1)d) so
we get 2S = n(2a+ (n− 1)d). Dividing both sides of this equation by 2, we obtain the formula

3To see why, try writing the summation using ‘n’ as the index.
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S =
n

2
(2a+ (n− 1)d)

If we rewrite the quantity 2a+ (n− 1)d as a+ (a+ (n− 1)d) = a1 + an, we get the formula

S = n

(
a1 + an

2

)

A helpful way to remember this last formula is to recognize that we have expressed the sum as the
product of the number of terms n and the average of the first and nth terms.

To derive the formula for the geometric sum, we start with a geometric sequence ak = ark−1, k ≥ 1,
and let S once again denote the sum of the first n terms. Comparing S and rS, we get

S = a + ar + ar2 + . . . + arn−2 + arn−1

rS = ar + ar2 + . . . + arn−2 + arn−1 + arn

Subtracting the second equation from the first forces all of the terms except a and arn to cancel
out and we get S− rS = a− arn. Factoring, we get S(1− r) = a (1− rn). Assuming r 6= 1, we can
divide both sides by the quantity (1− r) to obtain

S = a

(
1− rn

1− r

)

If we distribute a through the numerator, we get a− arn = a1 − an+1 which yields the formula

S =
a1 − an+1

1− r

In the case when r = 1, we get the formula

S = a+ a+ . . .+ a︸ ︷︷ ︸
n times

= na

Our results are summarized below.
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Equation 9.2. Sums of Arithmetic and Geometric Sequences:

• The sum S of the first n terms of an arithmetic sequence ak = a+ (k − 1)d for k ≥ 1 is

S =
n∑
k=1

ak = n

(
a1 + an

2

)
=
n

2
(2a+ (n− 1)d)

• The sum S of the first n terms of a geometric sequence ak = ark−1 for k ≥ 1 is

1. S =
n∑
k=1

ak =
a1 − an+1

1− r
= a

(
1− rn

1− r

)
, if r 6= 1.

2. S =
n∑
k=1

ak =

n∑
k=1

a = na, if r = 1.

While we have made an honest effort to derive the formulas in Equation 9.2, formal proofs require
the machinery in Section 9.3. An application of the arithmetic sum formula which proves useful
in Calculus results in formula for the sum of the first n natural numbers. The natural numbers
themselves are a sequence4 1, 2, 3, . . . which is arithmetic with a = d = 1. Applying Equation 9.2,

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2

So, for example, the sum of the first 100 natural numbers5 is 100(101)
2 = 5050.

An important application of the geometric sum formula is the investment plan called an annuity.
Annuities differ from the kind of investments we studied in Section 6.5 in that payments are
deposited into the account on an on-going basis, and this complicates the mathematics a little.6

Suppose you have an account with annual interest rate r which is compounded n times per year.
We let i = r

n denote the interest rate per period. Suppose we wish to make ongoing deposits of P
dollars at the end of each compounding period. Let Ak denote the amount in the account after k
compounding periods. Then A1 = P , because we have made our first deposit at the end of the first
compounding period and no interest has been earned. During the second compounding period, we
earn interest on A1 so that our initial investment has grown to A1(1 + i) = P (1 + i) in accordance
with Equation 6.1. When we add our second payment at the end of the second period, we get

A2 = A1(1 + i) + P = P (1 + i) + P = P (1 + i)

(
1 +

1

1 + i

)
The reason for factoring out the P (1 + i) will become apparent in short order. During the third
compounding period, we earn interest on A2 which then grows to A2(1 + i). We add our third

4This is the identity function on the natural numbers!
5There is an interesting anecdote which says that the famous mathematician Carl Friedrich Gauss was given this

problem in primary school and devised a very clever solution.
6The reader may wish to re-read the discussion on compound interest in Section 6.5 before proceeding.

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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payment at the end of the third compounding period to obtain

A3 = A2(1 + i) + P = P (1 + i)

(
1 +

1

1 + i

)
(1 + i) + P = P (1 + i)2

(
1 +

1

1 + i
+

1

(1 + i)2

)
During the fourth compounding period, A3 grows to A3(1+i), and when we add the fourth payment,
we factor out P (1 + i)3 to get

A4 = P (1 + i)3

(
1 +

1

1 + i
+

1

(1 + i)2
+

1

(1 + i)3

)
This pattern continues so that at the end of the kth compounding, we get

Ak = P (1 + i)k−1

(
1 +

1

1 + i
+

1

(1 + i)2
+ . . .+

1

(1 + i)k−1

)
The sum in the parentheses above is the sum of the first k terms of a geometric sequence with
a = 1 and r = 1

1+i . Using Equation 9.2, we get

1 +
1

1 + i
+

1

(1 + i)2
+ . . .+

1

(1 + i)k−1
= 1

1− 1

(1 + i)k

1− 1

1 + i

 =
(1 + i)

(
1− (1 + i)−k

)
i

Hence, we get

Ak = P (1 + i)k−1

(
(1 + i)

(
1− (1 + i)−k

)
i

)
=
P
(
(1 + i)k − 1

)
i

If we let t be the number of years this investment strategy is followed, then k = nt, and we get the
formula for the future value of an ordinary annuity.

Equation 9.3. Future Value of an Ordinary Annuity: Suppose an annuity offers an annual
interest rate r compounded n times per year. Let i = r

n be the interest rate per compounding
period. If a deposit P is made at the end of each compounding period, the amount A in the
account after t years is given by

A =
P
(
(1 + i)nt − 1

)
i

The reader is encouraged to substitute i = r
n into Equation 9.3 and simplify. Some familiar

equations arise which are cause for pause and meditation. One last note: if the deposit P is made
a the beginning of the compounding period instead of at the end, the annuity is called an annuity-
due. We leave the derivation of the formula for the future value of an annuity-due as an exercise
for the reader.
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Example 9.2.2. An ordinary annuity offers a 6% annual interest rate, compounded monthly.

1. If monthly payments of $50 are made, find the value of the annuity in 30 years.

2. How many years will it take for the annuity to grow to $100,000?

Solution.

1. We have r = 0.06 and n = 12 so that i = r
n = 0.06

12 = 0.005. With P = 50 and t = 30,

A =
50
(
(1 + 0.005)(12)(30) − 1

)
0.005

≈ 50225.75

Our final answer is $50,225.75.

2. To find how long it will take for the annuity to grow to $100,000, we set A = 100000 and
solve for t. We isolate the exponential and take natural logs of both sides of the equation.

100000 =
50
(
(1 + 0.005)12t − 1

)
0.005

10 = (1.005)12t − 1

(1.005)12t = 11

ln
(
(1.005)12t

)
= ln(11)

12t ln(1.005) = ln(11)

t = ln(11)
12 ln(1.005) ≈ 40.06

This means that it takes just over 40 years for the investment to grow to $100,000. Comparing
this with our answer to part 1, we see that in just 10 additional years, the value of the annuity
nearly doubles. This is a lesson worth remembering.

We close this section with a peek into Calculus by considering infinite sums, called series. Consider
the number 0.9. We can write this number as

0.9 = 0.9999... = 0.9 + 0.09 + 0.009 + 0.0009 + . . .

From Example 9.2.1, we know we can write the sum of the first n of these terms as

0. 9 · · · 9︸ ︷︷ ︸
n nines

= .9 + 0.09 + 0.009 + . . . 0.0 · · · 0︸ ︷︷ ︸
n− 1 zeros

9 =

n∑
k=1

9

10k

Using Equation 9.2, we have
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n∑
k=1

9

10k
=

9

10

1− 1

10n+1

1− 1

10

 = 1− 1

10n+1

It stands to reason that 0.9 is the same value of 1− 1
10n+1 as n→∞. Our knowledge of exponential

expressions from Section 6.1 tells us that 1
10n+1 → 0 as n → ∞, so 1 − 1

10n+1 → 1. We have
just argued that 0.9 = 1, which may cause some distress for some readers.7 Any non-terminating
decimal can be thought of as an infinite sum whose denominators are the powers of 10, so the
phenomenon of adding up infinitely many terms and arriving at a finite number is not as foreign
of a concept as it may appear. We end this section with a theorem concerning geometric series.

Theorem 9.2. Geometric Series: Given the sequence ak = ark−1 for k ≥ 1, where |r| < 1,

a+ ar + ar2 + . . . =

∞∑
k=1

ark−1 =
a

1− r

If |r| ≥ 1, the sum a+ ar + ar2 + . . . is not defined.

The justification of the result in Theorem 9.2 comes from taking the formula in Equation 9.2 for the
sum of the first n terms of a geometric sequence and examining the formula as n→∞. Assuming
|r| < 1 means −1 < r < 1, so rn → 0 as n→∞. Hence as n→∞,

n∑
k=1

ark−1 = a

(
1− rn

1− r

)
→ a

1− r

As to what goes wrong when |r| ≥ 1, we leave that to Calculus as well, but will explore some cases
in the exercises.

7To make this more palatable, it is usually accepted that 0.3 = 1
3

so that 0.9 = 3
(
0.3
)

= 3
(

1
3

)
= 1. Feel better?


