Reflection and Refraction

As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact values you record for your data to make later calculations.

Law of Reflection

Measure the angles of incidence $\left(\theta_{a}\right)$ and reflection $\left(\theta_{r}\right)$ with respect to the normal to the mirror surface.

Which of the following statements best represent your data? (Note: The order of these options may be different in the WebAssign question.)

- θ_{a} is much greater than θ_{r}
- θ_{a} is much less than θ_{r}
- θ_{a} is equal to θ_{r}

Image Formed By a Plane Mirror

Record the object distance $\left(d_{1}\right)$ and image distance $\left(d_{2}\right)$.

Which of the following statements best represent your data?

- d_{1} much greater than d_{2}
- d_{1} is much less than d_{2}
- d_{1} is equal to d_{2}

Measuring n

Measure the angles θ_{a} and θ_{b}, the angles of the incident and refracted rays.

Calculate the refractive index of the material of the square plate and record your result.

Critical Angle and Total Internal Reflection

Measure the angle of incidence $\left(\theta_{a}\right)$ and the angle of refraction $\left(\theta_{b}\right)$ for the ray as it enters the prism.

Calculate the refractive index of the material of the prism plate.

Use your measured value of the refractive index for the prism to calculate the critical angle $\left(\theta_{c}\right)$ for a ray traveling in the prism and incident on an interface with air.

The figure above shows that $\theta_{b}+\theta_{c}=60.0^{\circ}$. Record the value of θ_{c} given by this equation and your measured value of θ_{b}.

