Beer's Law Calibration Curve

Because crystal violet is a colored species, a device that measures light absorbance may be used to determine concentration. The absorbance is related to concentration according to the Beer-Lambert law:

$$A = \varepsilon lc$$

where A is the absorbance, ε is the "molar absorptivity" coefficient (a constant unique to the solute at a particular wavelength) for the substance of interest, l is the length of the light path, and cis the concentration of the absorbing species. A plot of absorbance vs. concentration for a set of solutions will yield a straight line for which the slope is εl . The cells are 1 cm wide, so the *l*-term is ignored. This plot can then be used to find concentration given absorbancies.

To prepare a Beer's law calibration curve, you should first determine the wavelength of light to use for maximum absorption. Then determine the absorbencies for a set of at least seven different concentrations of crystal violet prepared by serially diluting the stock solution -5.00 mL CV⁺ solution with 5.00 mL water for a total volume of 10.00 mL.

Molarity stock:

Graph your results to determine the linear range between concentration and absorbance.

Wavelength: _____

Solution Number	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Absorbance
1		
1		
2		
3		
4		
5		
6		
7		
8		

Linear regression equation for absorbance vs. concentration:

Correlation coefficient and reason for discarding data: