Example Abstracts for a General Chemistry Lab

TITLE

Gravimetric Determination of the Solubility Product Constant for Lead (II) Chloride, PbCl₂

INTRODUCTION

In this experiment, the equilibrium exhibited by slightly soluble ionic compounds in water is explored. Most ionic compounds, even those called "soluble", have a limited solubility in water. If more than this amount is added, some solid will remain undissolved. In a saturated solution at a particular temperature, equilibrium exists between the undissolved and dissolved solid. Slightly soluble ionic compounds are often called "insoluble" because they have a relatively low solubility (little dissolves before equilibrium is reached).

Lead (II) chloride, the insoluble ionic compound used, is assumed to dissociate according to equation 1.

$$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 Cl^{-}(aq)$$
(1)

 $K_{\rm sp}$, the equilibrium constant for the dissociation reaction, is written according to equation 2.

$$K_{\rm sp} = [{\rm Pb}^{2+}][{\rm Cl}^{-}]^2$$
 (2)

Mass measurements are made in order to determine the amounts of dissociated and undissociated PbCl₂. $K_{\rm sp}$ is then calculated using Eq. 2. Since PbCl₂ is "insoluble", $K_{\rm sp}$ should be very small (<<1). This reflects the fact that the concentration of the dissolved ions, Pb²⁺ and Cl⁻, is very low.

ABSTRACT

Instructions

Rate the following abstracts from 1 to 5.

1 =beginning, 2 =developing, 3 =adequate, 4 =accomplished, 5 =exemplary

Sample Abstracts

A The $K_{\rm sp}$ for PbCl₂ dissociation was found. Three trials were performed using about 0.770 g PbCl₂ each time. One trial was performed in 25.00 mL pure water; one trial was performed in 25.00 mL 0.10 M Pb(NO₃)₂ so the effect of additional dissolved ions could be assessed. $K_{\rm sp}$ of PbCl₂ was found to be 1.59×10^{-5} . Even though it was hard to measure the Pb²⁺ and Cl⁻ concentrations, the results were pretty good.

- **B** Equilibrium dissociation constants that compare favorably with literature values can be obtained by the gravimetric method used in this work. The solubility product constant, $K_{\rm sp}$, of lead (II) chloride was found to be $1.59 \times 10^{-5} \pm 6.00 \times 10^{-7}$ at 298 K, which is within 1% of the accepted value. Primary sources of error can be minimized if the work is performed carefully.
- C We calculated $K_{\rm sp}$ for PbCl₂ which is an ionic compound that doesn't dissolve in water too much but does a little bit depending on factors like temperature and other things. We had to do three tests with solid PbCl₂ and pure water or 0.10 M NaCl or 0.10 M Pb(NO₃)₂ and then figure out how much Pb²⁺ and Cl⁻ were in the solution part. We got a $K_{\rm sp}$ that was close to the value our TA said was right.
- **D** PbCl₂, an "insoluble" ionic compound, has a low solubility product constant $(K_{\rm sp})$ of 1.6×10^{-5} at 25°C. Using gravimetric analysis, the experimentally determined $K_{\rm sp}$ of PbCl₂ was found to be $1.59 \times 10^{-5} \pm 6.00 \times 10^{-7}$. The small percent difference between the expected and observed $K_{\rm sp}$ values indicates that this method of analysis is a valid and accurate way of determining the extent of dissociation of slightly soluble ionic compounds in water. Problems such as precipitate loss and/or contamination during filtration can introduce error if care is not taken during the experiments.