2.10 Newton's Law of Universal Gravitation

PRE-LECTURE READING 2.10

- Astronomy Today, $8^{\text {th }}$ Edition (Chaisson \& McMillan)
- Astronomy Today, $7^{\text {th }}$ Edition (Chaisson \& McMillan)
- Astronomy Today, $6^{\text {th }}$ Edition (Chaisson \& McMillan)

VIDEO LECTURE

- Newton's Law of Universal Gravitation ${ }^{1}$ (17:24)

SUPPLEMENTARY NOTES

Newton's Law of Universal Gravitation

- See Newton's Law of Universal Gravitation ${ }^{2}$.

Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the distance between them.

$$
\begin{equation*}
F=\frac{G M m}{r^{2}} \tag{13}
\end{equation*}
$$

- $F=$ force of gravity
- $G=$ Newton's gravitational constant
- $M=$ mass of first object
- $\quad m=$ mass of second object
- $r=$ distance between first and second objects

[^0]
EXERCISES

- Experiment with UNL's Newton's Law of Gravity Calculator ${ }^{3}$.
- Experiment with UNL's Gravity Algebra ${ }^{4}$.

ASSIGNMENT 2

- Do Question 10.

[^1]
[^0]: ${ }^{1}$ http://youtu.be/jBnM3kysssA
 ${ }^{2}$ http://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation

[^1]: ${ }^{3}$ http://astro.unl.edu/classaction/animations/renaissance/gravcalc.html
 ${ }^{4}$ http://astro.unl.edu/classaction/animations/renaissance/gravalgebra.html

