2.10 Newton's Law of Universal Gravitation

PRE-LECTURE READING 2.10

- Astronomy Today, 8th Edition (Chaisson & McMillan)
- Astronomy Today, 7th Edition (Chaisson & McMillan)
- Astronomy Today, 6th Edition (Chaisson & McMillan)

VIDEO LECTURE

• Newton's Law of Universal Gravitation¹ (17:24)

SUPPLEMENTARY NOTES

Newton's Law of Universal Gravitation

• See Newton's Law of Universal Gravitation².

Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the distance between them.

$$F = \frac{GMm}{r^2}$$

(13)

- F =force of gravity
- G = Newton's gravitational constant
- M = mass of first object
- m = mass of second object
- r = distance between first and second objects

¹http://youtu.be/jBnM3kysssA

 $^{^{2}}http://en.wikipedia.org/wiki/Newton's_law_of_universal_gravitation$

EXERCISES

- Experiment with UNL's Newton's Law of Gravity Calculator³.
- Experiment with UNL's Gravity Algebra⁴.

ASSIGNMENT 2

• Do Question 10.

 $^{^{3}} http://astro.unl.edu/classaction/animations/renaissance/gravcalc.html$

 $^{{}^{4}}http://astro.unl.edu/classaction/animations/renaissance/gravalgebra.html$