2.8 Measuring the Astronomical Unit

PRE-LECTURE READING 2.8

- Astronomy Today, $8^{\text {th }}$ Edition (Chaisson \& McMillan)
- Astronomy Today, $7^{\text {th }}$ Edition (Chaisson \& McMillan)
- Astronomy Today, $6^{\text {th }}$ Edition (Chaisson \& McMillan)

VIDEO LECTURE

- Measuring the Astronomical Unit ${ }^{1}$ (15:12)

SUPPLEMENTARY NOTES

Parallax

Figure 1: Earth-baseline parallax

[^0]

Figure 2: Stellar parallax

- In both cases:

$$
\begin{equation*}
\frac{\text { angular shift }}{360^{\circ}}=\frac{\text { baseline }}{(2 \pi \times \text { distance })} \tag{9}
\end{equation*}
$$

- angular shift $=$ apparent shift in angular position of object when viewed from different observing points
- baseline $=$ distance between observing points
- distance $=$ distance to object
- If you know the baseline and the angular shift, solving for the distance yields:

$$
\begin{equation*}
\text { distance }=\left(\frac{\text { baseline }}{2 \pi}\right) \times\left(\frac{360^{\circ}}{\text { angular shift }}\right) \tag{10}
\end{equation*}
$$

Note: Angular shift needs to be in degrees when using this equation.

- If you know the baseline and the distance, solving for the angular shift yields:

$$
\begin{equation*}
\text { angular shift }=\left(\frac{360^{\circ}}{2 \pi}\right) \times\left(\frac{\text { baseline }}{\text { distance }}\right) \tag{11}
\end{equation*}
$$

Note: Baseline and distance need to be in the same units when using this equation.

Standard astronomical baselines

- Earth-baseline parallax
- baseline $=$ diameter of Earth $=12,756 \mathrm{~km}$
- This is used to measure distances to objects within our solar system.
- Stellar parallax
- baseline $=$ diameter of Earth's orbit $=2$ astronomical units (or AU)
- 1 AU is the average distance between Earth and the sun.
- This is used to measure distances to nearby stars.

Radar Ranging

$$
\begin{equation*}
2 \times \text { distance }=c \times \text { time } \tag{12}
\end{equation*}
$$

- distance $=$ distance to object
- $2 \times$ distance $=$ total distance that radio waves travel
- $\quad c=$ speed of light $=$ speed of radio waves
- time $=$ time that it takes for radio waves to travel to object, reflect, and travel back

Measuring the Astronomical Unit

Step 1

Venus is often the closest planet to Earth, making it a natural target for both Earth-baseline parallax and radar ranging measurements, which yield the distance to Venus in physically meaningful units, such as kilometers.

- For example, when Venus is at closest approach to Earth, Earth-baseline parallax and radar ranging both measure the distance to Venus to be approximately $4.5 \times 10^{7} \mathrm{~km}$.

Step 2

Set the distance to Venus in kilometers equal to the distance to Venus in AU.

- For example, when Venus is at closest approach to Earth, the distance to Venus is approximately $1 \mathrm{AU}-0.7 \mathrm{AU}=0.3 \mathrm{AU}$.
- Hence: $0.3 \mathrm{AU}=4.5 \times 10^{7} \mathrm{~km}$

Figure 3

Step 3

Solve for 1 AU.

- For example, when Venus is at closest approach to Earth:

$$
\begin{aligned}
0.3 \mathrm{AU} & =4.5 \times 10^{7} \mathrm{~km} \\
\frac{0.3 \mathrm{AU}}{0.3} & =\frac{4.5 \times 10^{7} \mathrm{~km}}{0.3} \\
1 \mathrm{AU} & =1.5 \times 10^{8} \mathrm{~km}
\end{aligned}
$$

LAB LINK

Material presented in this unit is related to material presented in Lab 4 of Astronomy 101 Laboratory: Our Place in Space ${ }^{2}$.

[^1]In Lab 4: Cosmic Distance Ladder I: Parallax, we:

- Use parallax to measure distances to objects on Earth.
- Use parallax and Earth's diameter to measure distances to objects within our solar system.
- Use parallax measurements of objects within our solar system to measure the astronomical unit (AU).
- Use parallax and the AU to measure distances to nearby stars.

Video Lab Summary

- Cosmic Distance Ladder I: Parallax ${ }^{3}$ (29:27)

ASSIGNMENT 2

- Do Questions 7 and 8 .

[^2]
[^0]: ${ }^{1}$ http://youtu.be/AROp4EhWnhc

[^1]: ${ }^{2}$ http://skynet.unc.edu/introastro/ourplaceinspace/

[^2]: ${ }^{3}$ http://youtu.be/FdIOAFhGYos

