3.3 Diffraction, Interference, and Polarization

PRE-LECTURE READING 3.3

- Astronomy Today, 8th Edition (Chaisson & McMillan)
- Astronomy Today, 7th Edition (Chaisson & McMillan)
- Astronomy Today, 6th Edition (Chaisson & McMillan)

VIDEO LECTURE

• Diffraction, Interference, and Polarization¹ (24:13)

SUPPLEMENTARY NOTES

Diffraction

- See Diffraction².
- Particles pass by sharp edges.
- Waves bend around sharp edges, if within about one wavelength of the edge.

Interference

- See Interference³.
- Particles can interfere with each other, due to intermolecular forces, but they cannot interfere with themselves.
- Waves can interfere with themselves, constructively and destructively.
- The single-particle version of Young's double-slit experiment⁴ shows that light, as well as electrons, protons, neutrons, atoms, molecules, etc., although emitted and detected as particles, travel as waves.
 - In other words, particles travel as waves when we are not looking, but become particles again when we try to observe them!
 - This very nonintuitive—even disturbing—result tells us something fundamental about the nature of the universe, at least on very small scales.
 - Given this, this experiment is arguably the most important of the 20th century, if not of all time.

¹http://youtu.be/xFrvL2r-YB8

²http://en.wikipedia.org/wiki/Diffraction

³http://en.wikipedia.org/wiki/Interference_(wave_propagation)

 $^{{}^{4}}http://en.wikipedia.org/wiki/Double-slit_experiment$

• This phenomenon is called wave-particle duality⁵, and serves as the foundation of quantum mechanics⁶.

Polarization

- See Polarization⁷.
- Particles can pass through perpendicular polarizers.
- Waves cannot.

ASSIGNMENT 3

• Do Question 1.

 $^{^{5}} http://en.wikipedia.org/wiki/Wave\%E2\%80\%93 particle_duality$

⁶http://en.wikipedia.org/wiki/Quantum_mechanics

⁷http://en.wikipedia.org/wiki/Polarization_(waves)