3.4 Electromagnetic Spectrum

PRE-LECTURE READING 3.4

- Astronomy Today, 8th Edition (Chaisson & McMillan)
- Astronomy Today, 7th Edition (Chaisson & McMillan)
- Astronomy Today, 6th Edition (Chaisson & McMillan)

VIDEO LECTURE

• Electromagnetic Spectrum¹ (5:14)

SUPPLEMENTARY NOTES

Types of Light

- See Types of Light².
- Visible light—the light that we can see with our eyes—is only a tiny sliver of the entire electromagnetic spectrum, with wavelengths between ≈ 700 nm (red) and ≈ 400 nm (violet).

Figure 1: Image Credit: Advanced Light Source, Lawrence Berkeley National Laboratory

¹http://youtu.be/6ylZgURxlmc

 $^{^{2}} http://en.wikipedia.org/wiki/Electromagnetic_spectrum$

Light Wave Properties

Waves in general

• See Particle vs. Wave Motion³.

$$E \propto \nu$$

$$\lambda \times \nu = v$$

Light waves

$$E = h\nu \tag{6}$$

• h = Planck's constant

EXAMPLE:

If you double a light wave's frequency, you double its energy.

$$\lambda\times\nu=c$$

(7)

- c = speed of light
- Solving for λ and ν yields:

$$\lambda = \frac{c}{\nu} \tag{8}$$

$$\nu = \frac{c}{\lambda} \tag{9}$$

³../lab_3_2/manual.html

EXAMPLE:

Consider a 1-m radio wave. Hence, $\lambda = 1$ m and $\nu = \frac{(3 \times 10^8 \text{ m/s})}{(1 \text{ m})} = 3 \times 10^8 \text{ s}^{-1} = 3 \times 10^8 \text{ Hz}.$

EXAMPLE:

Consider a 10⁸-Hz radio wave. Hence, $\nu = 10^8$ Hz and $\lambda = \frac{(3 \times 10^8 \text{ m/s})}{(10^8 \text{ Hz})} = 3 \text{ m}.$

For λ measured in nm, μ m, mm, cm, m, and km, the following values of *c*, respectively, can be used to simplify calculations:

- $c = 3.00 \times 10^{17} \text{ nm/s}$
- $c = 3.00 \times 10^{14} \ \mu m/s$
- $c = 3.00 \times 10^{11} \text{ mm/s}$
- $c = 3.00 \times 10^{10} \text{ cm/s}$
- $c = 3.00 \times 10^8 \text{ m/s}$
- $c = 3.00 \times 10^5 \text{ km/s}$

ASSIGNMENT 2

• Do Question 2.