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Measurements & Error Analysis
“It is better to be roughly right than preciselyong.” — Alan Greenspan

The Uncertainty of Measurements

Some numerical statements are exact: Mary hastBeéssy and 2 + 2 = 4. However,
all measurements have some degree of uncertainty that may come faowariety of
sources. The process of evaluating the uncertasggciated with a measurement result is
often calleduncertainty analysis or error analysis.

The complete statement of a measured value shiocllabie an estimate of the level of
confidence associated with the value. Properly ntepp an experimental result along
with its uncertainty allows other people to makegments about the quality of the
experiment, and it facilitates meaningful comparsavith other similar values or a
theoretical prediction. Without an uncertainty estie, it is impossible to answer the
basic scientific question: “Does my result agre¢hvé theoretical prediction or results
from other experiments?” This question is fundarmkerior deciding if a scientific
hypothesis is confirmed or refuted.

When we make a measurement, we generally assurhedime exact or true value
exists based on how we define what is being medsiile we may never know this
true value exactly, we attempt to find this ideahnqtity to the best of our ability with the
time and resources available. As we make measutsrbgrdifferent methods, or even
when making multiple measurements using the sambéadewe may obtain slightly
different results. So how do we report our findirigs our best estimate of this elusive
true value? The most common way to show the range of vahegswe believe includes
the true value is:

measurement = (best estimatencertainty) units

Let's take an example. Suppose you want to findniass of a gold ring that you
would like to sell to a friend. You do not wantjémpardize your friendship, so you want
to get an accurate mass of the ring in order togeha fair market price. You estimate the
mass to be between 10 and 20 grams from how heé&esls in your hand, but this is not
a very precise estimate. After some searching,fiyalian electronic balance that gives a
mass reading of 17.43 grams. While this measuremsemtuch moreprecise than the
original estimate, how do you know that itascurate, and how confident are you that
this measurement represents the true value ofrigs mass? Since the digital display of
the balance is limited to 2 decimal places, youdoeport the mass as = 17.43+ 0.01
g. Suppose you use the same electronic balancel#aoh several more readings: 17.46
g, 17.42 g, 17.44 g, so that the average mass &pfmehe in the range of 17.440.02 g.
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By now you may feel confident that you know the mad this ring to the nearest
hundredth of a gram, but how do you know that tiue tvalue definitely lies between
17.43 g and 17.45 g? Since you want to be honestdgcide to use another balance that
gives a reading of 17.22 g. This value is cleadioty the range of values found on the
first balance, and under normal circumstances,mimint not care, but you want to be fair
to your friend. So what do you do now? The andigerin knowing something about the
accuracy of each instrument.

To help answer these questions, we should firBhelé¢he termsaccuracy and
precision:

Accuracy is the closeness of agreement between a measalesl and a
true or accepted value. Measurenmanor is the amount of inaccuracy.

Precision is a measure of how well a result can be detemin{methout
reference to a theoretical or true value). It is degree of consistency an
agreement among independent measurements of the aamtity; also
the reliability or reproducibility of the result.

S

The uncertainty estimate associated with a measurement shoulduaiccp
for both the accuracy and precision of the measeném

Note: Unfortunately the termarror anduncertainty are often used interchangeably to
describe both imprecision and inaccuracy. This @sago common that it is impossible
to avoid entirely. Whenever you encounter thesensermake sure you understand
whether they refer to accuracy or precision, ohbot

Notice that in order to determine thecuracy of a particular measurement, we have
to know the ideal, true valuBometimes we have a “textbook” measured value, wisic
well known, and we assume that this is our “idealue, and use it to estimate the
accuracy of our result. Other times we know a theoretiale, which is calculated from
basic principles, and this also may be taken asideal” value. But physics is an
empirical science, which means that the theory rbastalidated by experiment, and not
the other way around. We can escape these difésu#tnd retain a useful definition of
accuracy by assuming that, even when we do not know theualge, we can rely on the
best availableaccepted value with which to compare our experimental value

For our example with the gold ring, there is noegded value with which to compare,
and both measured values have the same precisiome fiave no reason to believe one
more than the other. We could look up the accusgmcifications for each balance as
provided by the manufacturer (the Appendix at the ef this lab manual contains
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accuracy data for most instruments you will use},the best way to assess the accuracy
of a measurement is to compare with a knastamdard. For this situation, it may be
possible to calibrate the balances with a standaasds that is accurate within a narrow
tolerance and is traceable topaimary mass standard at the National Institute of
Standards and Technology (NIST). Calibrating thdarm@es should eliminate the
discrepancy between the readings and provide a acoveate mass measurement.

Precision is often reported quantitatively by usingative or fractional
uncertainty:

RelativeUncertaimy—| uncertainy |
| measureduantity "

059 _ 05 = 0%
For examplem = 75.5 + 0.5 g has a fractional uncertainty off 959

Accuracy is often reported quantitatively by usietative error:

measuredalue- expectedralue
expectedialue 2)

RelativeError=

If the expected value fanis 80.0 g, then the relative error |s75.:;§0.0 — _0.056= —56%

Note: The minus sign indicates that the measured visluess than the expected
value.

When analyzing experimental data, it is importduait tyou understand the difference
between precision and accuradr.ecision indicates the quality of the measurement,
without any guarantee that the measurement is écbtrAccuracy, on the other hand,
assumes that there is an ideal value, and tells faowour answer is from that ideal,
“right” answer. These concepts are directly related random and systematic
measurement errors.
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Types of Errors

Measurement errors may be classified as eitiedom or systematic, depending on
how the measurement was obtained (an instrument @awse a random error in one
situation and a systematic error in another).

Random errors are statistical fluctuations (in either directiom) the
measured data due to the precision limitationhefrheasurement device
Random errors can be evaluated through statisticalysis and can be
reduced by averaging over a large number of ob8ens(see standard
error).

Systematic errors are reproducible inaccuracies that are consistentl
the same direction. These errors are difficultdedect and cannot be
analyzed statistically. If a systematic error igntified when calibrating
against a standard, applying a correction or cbaoec factor to
compensate for the effect can reduce the bias.k&nmandom errors,
systematic errors cannot be detected or reducedcbgasing the number
of observations.

When making careful measurements, our goal isdoae as many sources of error as
possible and to keep track of those errors thatavenot eliminate. It is useful to know
the types of errors that may occur, so that we megognize them when they
arise.Common sources of error in physics laboragperiments:

I ncomplete definition (may be systematic or random) - One reason tliginpossible
to make exact measurements is that the measurésnesttalways clearly defined. For
example, if two different people measure the lermjtthe same string, they would
probably get different results because each persynstretch the string with a different
tension. The best way to minimize definition errisrgo carefully consider and specify
the conditions that could affect the measurement.

Failureto account for afactor (usually systematic) — The most challenging part o
designing an experiment is trying to control oraagot for all possible factors except the
one independent variable that is being analyzedinstance, you may inadvertently
ignore air resistance when measuring free-fall lacagon, or you may fail to account for
the effect of the Earth’s magnetic field when meisguthe field near a small magnet.
The best way to account for these sources of &rttorbrainstorm with your peers about
all the factors that could possibly affect yourulesThis brainstorm should be done
before beginning the experiment in order to plan and antéor the confounding factors
before taking data. Sometimesarection can be applied to a resalter taking data to
account for an error that was not detected earlier.
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Environmental factors (systematic or random) - Be aware of errors inioadl by your
immediate working environment. You may need to @éeount for or protect your
experiment from vibrations, drafts, changes in terafure, and electronic noise or other
effects from nearby apparatus.

I nstrument resolution (random) - All instruments have finite precisidrat limits the
ability to resolve small measurement differences.ifstance, a meter stick cannot be
used to distinguish distances to a precision mettebthan about half of its smallest
scale division (0.5 mm in this case). One of th&t be&ys to obtain more precise
measurements is to usewd! difference method instead of measuring a quantity directly.
Null or balance methods involve using instrumentation to measuealifference between
two similar quantities, one of which is known vegcurately and is adjustable. The
adjustable reference quantity is varied until theegence is reduced to zero. The two
guantities are then balanced and the magnitudeeaiintknown quantity can be found by
comparison with a measurement standard. With tleihad, problems of source
instability are eliminated, and the measuring unsient can be very sensitive and does
not even need a scale.

Calibration (systematic} Whenever possible, the calibration of an instrunséould be
checked before taking data. If a calibration stathdnot available, the accuracy of the
instrument should be checked by comparing with leranstrument that is at least as
precise, or by consulting the technical data predibdly the manufacturer. Calibration
errors are usually linear (measured as a fractidgheofull scale reading), so that larger
values result in greater absolute errors.

Zero offset (systematic) - When making a measurement withaameter caliper,
electronic balance, or electrical meter, alway<klibe zero reading first. Re-zero the
instrument if possible, or at least measure andrcethe zero offset so that readings can
be corrected later. It is also a good idea to clieekzero reading throughout the
experiment. Failure to zero a device will resalaiconstant error that is more significant
for smaller measured values than for larger ones.

Physical variations (random) - It is always wise to obtain multipleasarements over
the widest range possible. Doing so often revealmtions that might otherwise go
undetected. These variations may call for cloganenation, or they may be combined
to find an average value.

Parallax (systematic or random) - This error can occur velventhere is some distance
between the measuring scale and the indicatortoseltain a measurement. If the
observer’s eye is not squarely aligned with thenfsiand scale, the reading may be too
high or low (some analog meters have mirrors tp aeth this alignment).
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Instrument drift (systematic) - Most electronic instruments hawslegs that drift over
time. The amount of drift is generally not a camcéut occasionally this source of error
can be significant.

L ag time andhysteresis (systematic) - Some measuring devices require tiimneach
equilibrium, and taking a measurement before terument is stable will result in a
measurement that is too high or low. A common exXangptaking temperature readings
with a thermometer that has not reached thermalilegum with its environment. A
similar effect ishysteresis where the instrument readings lag behind and apgpdeave a
“memory” effect, as data are taken sequentially imgwup or down through a range of
values. Hysteresis is most commonly associated witerials that become magnetized
when a changing magnetic field is applied.

Personal errors come from carelessness, poor technique, or bidiseopart of the
experimenter. The experimenter may measure indtyyec may use poor technique in
taking a measurement, or may introduce a biasnmg#gasurements by expecting (and
inadvertently forcing) the results to agree with #éxpected outcome.

Gross personal errors, sometimes cattedakes or blunders, should be
avoided and corrected if discovered. As a rule,sqeal errors are
excluded from the error analysis discussion becatisiss generally
assumed that the experimental result was obtaiyefbllowing correct
procedures.The term human error should also be avoided in error
analysis discussions because it is too general to be useful.

Estimating Experimental Uncertainty for a Single Me  asurement

Any measurement you make will have some uncertais$pciated with it, no matter
the precision of your measuring tool. So how do yidetermine and report this
uncertainty?

The uncertainty of a single measurement is limkgdhe precision and
accuracy of the measuring instrument, along with atiner factors that
might affect the ability of the experimenter to raake measurement.

Forexample, if you are trying to use a meter stickneasure the diameter of a tennis
ball, the uncertainty might ke 5 mm, but if you used a Vernier caliper, the utaiaty
could be reduced to mayke2 mm. The limiting factor with the meter stickparallax,
while the second case is limited by ambiguity i ttefinition of the tennis ball’'s
diameter (it's fuzzy!). In both of these cases, tineertainty is greater than the smallest

22 University of North Carolina



Measurements & Error Analysis

divisions marked on the measuring tool (likely 1 nand 0.05 mm respectively).
Unfortunately, there is no general rule for deteimy the uncertainty in all
measurements. The experimenter is the one who eah dvaluate and quantify the
uncertainty of a measurement based on all the lpesfactors that affect the result.
Therefore, the person making the measurement leolhgation to make the best
judgment possible and report the uncertainty inay what clearly explains what the
uncertainty represents:

Measurement = (measured value + standard unceftainit of measurement

where thet standard uncertainty indicates approximately a 68% confidence interval
(see sections on Standard Deviation and Reportirggtiainties).

Example: Diameter of tennis ball = &70.2 cm

Estimating Uncertainty in Repeated Measurements

Suppose you time the period of oscillation of adudnm using a digital instrument
(that you assume is measuring accurately) and fifd= 0.44 seconds. This single
measurement of the period suggests a precisiof.005 s, but this instrument precision
may not give a complete sense of the uncertaihiyou repeat the measurement several
times and examine the variation among the meastwaie@s, you can get a better idea of
the uncertainty in the period. For example, heeethe results of 5 measurements, in
seconds: 0.46, 0.44, 0.45, 0.44, 0.41.

X+ X+t Xy

N
For this situation, the best estimate of the peisatieaver age, or mean:

Averagémeany

Whenever possible, repeat a measurement severed timd average the
results. This average is generally the best estinoatthe “true” value
(unless the data set is skewed by one or moatkeers which should be
examined to determine if they are bad data pohs should be omitted
from the average or valid measurements that reduiiteer investigation).
Generally, the more repetitions you make of a megsent, the better thig
estimate will be, but be careful to avoid wastinget taking more
measurements than is necessary for the precisiireel.
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Consider, as another example, the measuremeng o¥ithth of a piece of paper using
a meter stick. Being careful to keep the metekgpigrallel to the edge of the paper (to
avoid a systematic error which would cause the oredsvalue to be consistently higher
than the correct value), the width of the papaneasured at a number of points on the
sheet, and the values obtained are entered iradalae. Note that the last digit is only a
rough estimate, since it is difficult to read a emedtick to the nearest tenth of a millimeter
(0.01 cm).

Observation Width (cm)
#1 31.33
#2 31.15
#3 31.26
#4 31.02
#5 31.20

Average = Sum of observed widths - 155.96cm - 31 19¢m

no. of observations

This average is the best available estimate oividén of the piece of paper, but it is
certainly not exact. We would have to average dimita number of measurements to
approach the true mean value, and even then, weaguaranteed that the mean value is
accurate because there is stdbme systematic error from the measuring tool, which ca
never be calibrateperfectly. So how do we express the uncertainty in ouraggeevalue?

One way to express the variation among the measuntsms to use thaverage
deviation. This statistic tells us on average (with 50% coarfice) how much the
individual measurements vary from the mean.

o — =X|+|X = X|+.+]| X, —X
AverageDeV|at|on,d:|)<1 *1% Nl Xy =X]

However, thestandard deviation is the most common way to characterize the spread

of a data set. Theatandard deviation is always slightly greater than theverage

deviation, and is used because of its association withntirenal distribution that is
frequently encountered in statistical analyses.
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Standard Deviation
To calculate the standard deviation for a sample ofeasurements:

1. Sum all the measurements and divide by N tdhgesver age, or mean.

2. Now, subtract thisverage from each of the N measurements to obtain N
“deviations”.

3. Square each of these Meviations and add them all up.

4. Divide this result by (N-1) and take the squai.

We can write out the formula for the standard déwmmaas follows. Let the N
measurements be calleg, x,, ..., %,. Let the average of the N values be caliedrhen
each deviation is given by

X =x —X,fori=1, 2, ..., N. Thetandard deviation is:

o (B B

In our previous example, the average widtis 31.19 cm. The deviations are:

Observation Width (cm)| Deviation (cm)

#1 31.33 +0 =31.33-31.19
14

#2 31.15 - =31.15-31.19
0.04

#3 31.26 +0 =31.26-31.19
.07

#4 31.02 - =31.02 - 31.19
0.17

#5 31.20 +0 =31.20-31.19
.01
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Theaverage deviation is:d = 0.086 cm

(014)2 + (004) + (007)> + (017)° + (001>
5-1

Thestandard deviation is: s:\/ =012cm

The significance of the standard deviation is thisyou now make one more
measurement using the same meter stick, you caonmahly expect (with about 68%
confidence) that the new measurement will be withit?2 cm of the estimated average of
31.19 cm. In fact, it is reasonable to use the dgteth deviation as the uncertainty
associated with thisingle new measurement. However, the uncertainty ofatleeage
value is thestandard deviation of the mean, which is alwaysless than the standard
deviation (see next section).

Consider an example where 100 measurements ofrdityuaere made. The average
or mean value was 10.5 and the standard deviatassw 1.83. The figure below is a
histogram of the 100 measurements, which shows how oftear&@in range of values
was measured. For example, in 20 of the measursntéetvalue was in the range 9.5 to
10.5, and most of the readings weattese to the mean value of 10.5. The standard
deviations for this set of measurements is roughly how famfrthe average valueost
of the readings fell. For a large enough samplpr@pmately 68% of the readings will
be within one standard deviation of the mean vad%8s of the readings will be in the
interval X £ 2s, and nearly all (99.7%) of readings will liethin 3 standard deviations
from the mean. The smooth curve superimposed orhigtegram is thegaussian or
normal distribution predicted by theory for measuremeant®lving random errors. As
more and more measurements are made, the histagibmore closely follow the bell-
shaped gaussian curve, but the standard deviatiotheo distribution will remain
approximately the same.

25
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Standard Deviation of the Mean (Standard Error)

When we report the average value of N measurem#érgsyuncertainty we should
associate with this average value is stedard deviation of the mean, often called the
standard error (SE).

S

Wl

StandardDeviation of the Mean, or StandardError (SE), oy =

$)

The standard error is smaller than thetandard deviation by a factor ofl/s/N . This
reflects the fact that we expect the uncertaintyhef average value to get smaller when
we use a larger number of measurements, N. In theiqus example, we find the
standard error is 0.05 cm, where we have dividedstandard deviation of 0.12 .
The final result should then be reported as:

Average paper width = 31.190.05 cm

Anomalous Data

The first step you should take in analyzing datad(aven while taking data) is to
examine the data set as a whole to look for patandoutliers. Anomalous data points
that lie outside the general trend of the data may suggest an stbegephenomenon that
could lead to a new discovery, or they may simmthoe result of a mistake or random
fluctuations. In any case, an outlier requires @l@xamination to determine the cause of
the unexpected result. Extreme data should neverthmown out” without clear
justification and explanation, because you may ibeatlding the most significant part of
the investigation! However, if you can clearly jsbmitting an inconsistent data point,
then you should exclude the outlier from your asiglyso that the average value is not
skewed from the “true” mean.

Fractional Uncertainty Revisited

When a reported value is determined by taking trexame of a set of independent
readings, the fractional uncertaingygiven by the ratio of the uncertainty dividedthg
average value. For this example,

uncertaint' _ 0.05 cm

Fractional uncertainty: average ~ 31,10 con =0.001€= 0.2%
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Note that the fractional uncertainty is dimensisslébut is often reported as a
percentage or in parts per million (ppm) to empashe fractional nature of the value. A
scientist might also make the statement that tl@asurement “is good to about 1 part in
500" or “precise to about 0.2%".

The fractional uncertainty is also important beeaus is used inpropagating
uncertaintyin calculations using the result of a measuremastdiscussed in the next
section.

Propagation of Uncertainty

Suppose we want to determine a quarttitwhich depends or and maybe several
other variabley, zetc. We want to know the error inf we measure, y, ... with errors

Ox, Oy, ...

Examples: f=xy (Area of a rectangle)
f=pcosf (x-component of momentum)
f=x/t (velocity)
For a single-variable functian(x), the deviation irf can be related to the deviation in

X using calculus:
( ; j
dx

Thus, taking the square and the average:
a4 &
dx

i
dx

and using the definition af, we get:

X
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Examples:
a) f =vx b) f = X
i:i ﬂ:z
dx  24x dx
o o; 1o g, (o)
o, =—=, 0or —==——2% — =2
N f 2x f X
c) f=cod
— =-sind

o, =|sindo,, or U—ff=|tan6’|ag

Note: in this situationgg must be in radians.

In the case wheredepends on two or more variables, the derivatimve can be
repeated with minor modification. For two variablis, y), we have:

NCAMRES
4 _(axj%(ayj@

The partial derivativeﬂ means differentiating with respect tox holding the other

0X
variables fixed. Taking the square and the averageget thelaw of propagation of
uncertainty:
2 2
(@)° =[ﬂj 392+ & (@)2+2(ﬂj & Iy
ox ay ox \ oy (4)

If the measurements @fandy areuncorrelated, then xody =0, and we get:

_ (af jz , (ot

o=l =—| o | g,
0X oy
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Examples:
a)f=x+y

i:l i_l
0x oy
Do, =,o;+0;

When adding (or subtracting)dependent measurements, the absolute uncertadhtye
sum (or difference) is the root sum of squares (R &e individual absolute uncertaintie
When addingorrelated measurements, the uncertainty in the result iplgithe sum of the
absolute uncertainties, which is always a largeeuainty estimate than adding in
guadrature (RSS). Adding or subtracting a constaas not change the absolute uncertaifty
of the calculated value as lona as the constaan exact value

b) f = xy

c)f=xly

of of
—_= — =X
0x ay

Do, =, y’o; +x°0,

Dividing the previous equation by f = xy, we get:

30
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Dividing the previous equation by f = x / y, we get

o 2 ?
o J(ﬁ) (%)
f X y
When multiplying (or dividing) independent measuests, the relative uncertainty the
product (quotient) is the RSS of the individuahtele uncertaintiesWhen multiplying
correlated measurements, the uncertainty in the result isthessum of the relative uncertaintigp,

which is always a larger uncertainty estimate thating in quadrature (RSS). Multiplying or
dividing by a constant does not change the relatheertainty of the calculated value.

Note that the relative uncertainty inas shown in (b) and (c) above, has the same
form for multiplication and division: the relativencertainty in a product or quotient
depends on theslative uncertainty of each individual term.

Example: Find uncertainty v wherev=at with a=98+ 01m/s?, t=1.2+0.1s

% - \/(ﬂjz +(ﬂj2 = \/(0_'1)2 +[0_'1j2 =/(0.0107 +(0.029 = 0.031 or 3.1%

a t 98 12

Notice that the relative uncertaintyti2.9%) is significantly greater than the relative
uncertainty fora (1.0%), and therefore the relative uncertainty is essentially the same
as fort (about 3%).

3.1%
Graphically, the RSS is like the Pythagorean theore L o% g"
. 0

The total uncertainty is the length of the hyposanaf a right triangle 2 9o
with legs the length of each uncertainty component. nI70

Timesaving approximation: “A chain is only as strong as its weakest
link.”

If one of the uncertainty terms is more than 3 sirgesater than the other
terms, the root-squares formula can be skipped, twed combined
uncertainty is simply the largest uncertainty. T$hertcut can save a lot of
time without losing any accuracy in the estimatéhefoverall uncertainty.
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The Upper-Lower Bound Method of Uncertainty Propaga  tion

An alternative, and sometimes simpler procedureth® tediouspropagation of
uncertainty law is the upper-lower bound method of uncertainty propagation. This
alternative method does not yieldtandard uncertainty estimate (with a 68% confidence
interval), but it does give aeasonable estimate of the uncertainty for practically any
situation The basic idea of this method is to use the unicgyteanges of each variable to
calculate the maximum and minimum values of thecfiom. You can also think of this
procedure as examining the best and worst casearsoenFor example, suppose you
measure an angle to be: =25 + 1° and you needed to firfd= co®, then:

fmax = COS(26) = 0.8988
fmin = COS(24) = 0.9135

0 f=0.906x 0.007 (where 0.007 is half the difference betwégn and
fmin)
Note that even thougB was only measured to 2 significant figuréss known to 3
figures. By using theropagation of uncertainty law: of = |sirBjog = (0.423){7180) =
0.0074 (same result as above)

The uncertainty estimate from the upper-lower boorathod is generally
larger than the standard uncertainty estimate fdrord the propagation of
uncertainty law, but both methods will give a resdde estimate of the
uncertainty in a calculated value.

The upper-lower bound method is especially usetugnwvthe functional relationship
is not clear or is incomplete. One practical agtian is forecasting the expected range in
an expense budget. In this case, some expenseshenéixyed, while others may be
uncertain, and the range of these uncertain teoukl de used to predict the upper and
lower bounds on the total expense.

Significant Figures

The number of significant figures in a value candieéined as all the digits between
and including the first non-zero digit from thet)ethrough the last digit. For instance,
0.44 has two significant figures, and the numbe7 B8 has 5 significant figures. Zeroes
are significant except when used to locate thendacpoint, as in the number 0.00030,
which has 2 significant figures. Zeroes may or may be significant for numbers like
1200, where it is not clear whether two, threefpar significant figures are indicated. To
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avoid this ambiguity, such numbers should be exaesn scientific notation to (e.qg.
1.20 x 16 clearly indicates three significant figures).

When using a calculator, the display will oftenwhmany digits, only some of which
aremeaningful (significant in a different sense). For examplg/ou want to estimate the
area of a circular playing field, you might pacé tbie radius to be 9 meters and use the
formula: A =12 When you compute this area, the calculator migport a value of
254.4690049 r It would be extremely misleading to report thisnmber as the area of
the field, because it would suggest that you knbe &rea to an absurd degree of
precision - to within a fraction of a square miléter! Since the radius is only known to
one significant figure, the final answer shouldoat®ntain only one significant figure:
Area = 3x 17 n?.

From this example, we can see that the numbergoifgiant figures reported for a
value implies a certain degree of precision. Irt,félce number of significant figures
suggests a rough estimate of the relative uncéytain

The number of significant figures implies an appmete relative
uncertainty:

1 significant figure suggests a relative uncertagitabout 10% to 100%
2 significant figures suggest a relative uncertaoftabout 1% to 10%
3 significant figures suggest a relative uncertagitabout 0.1% to 1%

To understand this connection more clearly, comsmlevalue with 2 significant
figures, like 99, which suggests an uncertaintybfor a relative uncertainty afl/99 =
+1%. (Actually some people might argue that the iegbuncertainty in 99 i20.5 since
the range of values that would round to 99 are 8890.4. But since the uncertainty here
is only a rough estimate, there is not much poigtiag about the factor of two.) The
smallest 2-significant figure number, 10, also |gg an uncertainty &fl, which in this
case is a relative uncertainty afl/10 = £10%. The ranges for other numbers of
significant figures can be reasoned in a similanmnea.
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Use of Significant Figures for Simple Propagation o f Uncertainty

By following a few simple rules, significant figugwecan be used to find the
appropriate precision for a calculated result fog four most basic math functions, all
without the use of complicated formulas for progagpuncertainties.

For multiplication and division, the number of gfggant figures that are
reliably known in a product or quotient is the samsdahe smallest numbe
of significant figures in any of the original nunmbe

Example: 6.6 (2 significant figures)
X 7328.7 (5 significant figures)
48369.42 = 48 x £0(2 significant figures)

For addition and subtraction, the result shoulddended off to the last
decimal place reported for the least precise number

Examples: 223.64 5560.5
+54 + 0.008
278 5560.5

If a calculated number is to be used in furthecwations, it is good practice to keep
one extra digit to reduce rounding errors that magumulate. Then the final answer
should be rounded according to the above guidelines

Uncertainty, Significant Figures, and Rounding

For the same reason that it is dishonest to repoesult with more significant figures
than are reliably known, the uncertainty value $th@lso not be reported with excessive
precision.

For example, it would be unreasonable for a stuttergport a result like:
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measured density = 8.93 + 0.475328 ¢/ct?RONG!

The uncertainty in the measurement cannot posbibdlgnown so precisely! In most
experimental work, the confidence in the uncernjagdtimate is not much better than
about+50% because of all the various sources of erronenaf which can be known
exactly. Therefore, uncertainty values should lag¢est to only one significant figure (or
perhaps 2 sig. figs. if the first digit is a 1).

Because experimental uncertainties are inherentfyreécise, they should
be rounded to one, or at most two, significantriggu

To help give a sense of the amount of confidenaé ¢hn be placed in the standard
deviation, the following table indicates the relatiuncertainty associated with the
standard deviation for various sample sizes. Nuwiein order for an uncertainty value to
be reported to 3 significant figures, more than0OQO, readings would be required to
justify this degree of precision!

Relative Sig.Figs. Implied

N Uncert.* Valid Uncertainty

2 71% 1 +10% to 1009
3 50% 1 + 10% to 1009
4 41% 1 + 10% to 1009
5 35% 1 + 10% to 1009
10 24% 1 + 10% to 1009
20 16% 1 + 10% to 1009
30 13% 1 + 10% to 1009
50 10% 2 + 1% to 109
10C 7% 2 + 1% to 109
1000( 0.7% 3 +0.1% to 19

g, _ 1
0' / —_

When an explicit uncertainty estimate is made,uheertainty aAN-D
term indicates how many significant figures shobdl reported in the measured value
(not the other way around!). For example, the uag®ly in the density measurement
above is about 0.5 g/énso this tells us that the digit in the tenthscplés uncertain, and
should be the last one reported. The other digithé hundredths place and beyond are
insignificant, and should not be reported: measdetsity = 8.9 + 0.5 g/chRIGHT!

*The relative uncertainty is given by the approxienBormula:
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An experimental value should be rounded to be stesi with th
magnitude of its uncertainty. This generally metirad the last significaft
figure in any reported value should be in the sal®emal place as the
uncertainty.

In most instances, this practice of rounding aneexpental result to be consistent
with the uncertainty estimate gives the same nunebesignificant figures as the rules
discussed earlier for simple propagation of unaares for adding, subtracting,
multiplying, and dividing.

Caution: When conducting an experiment, it is importantkeep in mind that
precision is expensive (both in terms of time and material resources).ndbwaste your
time trying to obtain a precise result when onlyoagh estimate is required. The cost
increases exponentially with the amount of preaisiequired, so the potential benefit of
this precision must be weighed against the extsa co

Combining and Reporting Uncertainties

In 1993, the International Standards Organizati@D] published the first official
worldwide Guide to the Expression of Uncertainty in Measurement. Before this time,
uncertainty estimates were evaluated and reportedrding to different conventions
depending on the context of the measurement osdiemtific discipline. Here are a few
key points from this 100-page guide, which candaentl in modified form on the NIST
website (see References).

When reporting a measurement, the measured vatudgdshe reported along with an
estimate of the totatombined standard uncertainty U. of the value. The total
uncertainty is found by combining the uncertaintynponents based on the two types of
uncertainty analysis:

Type A evaluation of standard uncertainty — method of evaluation of uncertainty
by the statistical analysis of a series of obse@mat This method primarily includes
random errors.

Type B evaluation of standard uncertainty — method of evaluation of uncertainty
by means other than the statistical analysis ofeseof observations. This method
includessystematic errors and any other uncertainty factors thaettmerimenter believes
are important.

The individual uncertainty components should be combined using thaw of
propagation of uncertainties, commonly called the “root-sum-of-squares” or “RSS”
method. When this is done, the combined standardrtainty should be equivalent to the
standard deviation of the result, making this utaety value correspond with a 68%
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confidence interval. If a wider confidence interval desired, the uncertainty can be
multiplied by acoverage factor (usuallyk = 2 or 3) to provide an uncertainty range that
is believed to include the true value with a coafide of 95% (fok = 2) or 99.7% (fok

= 3). If a coverage factor is used, there sho@dlrlear explanation of its meaning so
there is no confusion for readers interpretingdiigaificance of the uncertainty value.

You should be aware that tkeuncertainty notation may be used to indicate cbffie
confidence intervals, depending on the scientifgcigline or context. For example, a
public opinion poll may report that the results @davmargin of error of £3%, which
means that readers can be 95% confident (not 68fftdent) that the reported results are
accurate within 3 percentage points. Similarly, anofacturer’'stolerance rating
generally assumes a 95% or 99% level of confidence.

Conclusion: “When do measurements agree with each o ther?”

We now have the resources to answer the fundamscititific question that was
asked at the beginning of this error analysis disimn: “Does my result agree with a
theoretical prediction or results from other expemts?”

Generally speaking, a measured result agrees withearetical prediction if the
prediction lies within the range of experimentatenrainty. Similarly, if two measured
values havestandard uncertainty ranges that overlap, then the measurements atdcsai
be consistent (they agree). If the uncertainty ranges do notrlape then the
measurements are said to Uescrepant (they do not agree). However, you should
recognize that these overlap criteria can give bpposite answers depending on the
evaluation and confidence level of the uncertaitttyvould be unethical to arbitrarily
inflate the uncertainty range just to make a meament agree with an expected value. A
better procedure would be to discuss the sizeeflitierence between the measured and
expected values within the context of the uncetyaisnd try to discover the source of the
discrepancy if the difference is truly significanfo examine your own data, you are
encouraged to use thHdeasurement Comparison tool available on the lab website:
http://www.physics.unc.edu/labs

Here are some examples using this graphical asdlysi:

Measurements and their uncertainties A=12x04
B=18+04
—e— —— A
—— -l These measurementmgree within
y y y T their uncertainties, despite the fact that
° o ' e ? 2 the percent difference between their

central values is 40%.
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However, with half the uncertainty (x0.2), thes
same measurementslo not agree since their

Measurements and their uncertainties

—e—

uncertainties do not overlap. Further investigati —— =

—il— B

would be needed to determine the cause for { ‘ ‘ ‘ ‘
discrepancy. Perhaps the uncertainties we o 05 1 15 2 25

underestimated, there may have been a systematC
error that was not considered, or there may beeadifference between these values.

An alternative method for determining agreementvben values is to calculate the
difference between the values divided by their comdh standard uncertainty. This ratio
gives the number of standard deviations separatiagwo values. If this ratio is less
than 1.0, then it is reasonable to conclude thatvdlues agree. If the ratio is more than
2.0, then it is highly unlikely (less than about F¥obability) that the values are the
same.

|1.2- 18|

Example from above with = 0.4: =11 Therefore, A and B likely agree.

Example from above with = 0.2: % =21 Therefore, it is unlikely that A
and B agree.
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