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Measurements & Error Analysis 
“It is better to be roughly right than precisely wrong.”  – Alan Greenspan 

The Uncertainty of Measurements 
Some numerical statements are exact: Mary has 3 brothers, and 2 + 2 = 4. However, 

all measurements have some degree of uncertainty that may come from a variety of 
sources. The process of evaluating the uncertainty associated with a measurement result is 
often called uncertainty analysis or error analysis. 

The complete statement of a measured value should include an estimate of the level of 
confidence associated with the value. Properly reporting an experimental result along 
with its uncertainty allows other people to make judgments about the quality of the 
experiment, and it facilitates meaningful comparisons with other similar values or a 
theoretical prediction. Without an uncertainty estimate, it is impossible to answer the 
basic scientific question: “Does my result agree with a theoretical prediction or results 
from other experiments?” This question is fundamental for deciding if a scientific 
hypothesis is confirmed or refuted. 

When we make a measurement, we generally assume that some exact or true value 
exists based on how we define what is being measured. While we may never know this 
true value exactly, we attempt to find this ideal quantity to the best of our ability with the 
time and resources available. As we make measurements by different methods, or even 
when making multiple measurements using the same method, we may obtain slightly 
different results. So how do we report our findings for our best estimate of this elusive 
true value?  The most common way to show the range of values that we believe includes 
the true value is: 

   measurement = (best estimate ± uncertainty) units 

Let’s take an example. Suppose you want to find the mass of a gold ring that you 
would like to sell to a friend. You do not want to jeopardize your friendship, so you want 
to get an accurate mass of the ring in order to charge a fair market price. You estimate the 
mass to be between 10 and 20 grams from how heavy it feels in your hand, but this is not 
a very precise estimate. After some searching, you find an electronic balance that gives a 
mass reading of 17.43 grams. While this measurement is much more precise than the 
original estimate, how do you know that it is accurate, and how confident are you that 
this measurement represents the true value of the ring’s mass? Since the digital display of 
the balance is limited to 2 decimal places, you could report the mass as m = 17.43 ± 0.01 
g. Suppose you use the same electronic balance and obtain several more readings: 17.46 
g, 17.42 g, 17.44 g, so that the average mass appears to be in the range of 17.44 ± 0.02 g. 
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By now you may feel confident that you know the mass of this ring to the nearest 
hundredth of a gram, but how do you know that the true value definitely lies between 
17.43 g and 17.45 g? Since you want to be honest, you decide to use another balance that 
gives a reading of 17.22 g. This value is clearly below the range of values found on the 
first balance, and under normal circumstances, you might not care, but you want to be fair 
to your friend. So what do you do now?  The answer lies in knowing something about the 
accuracy of each instrument. 

 To help answer these questions, we should first define the terms accuracy and 
precision: 

Accuracy is the closeness of agreement between a measured value and a 
true or accepted value.  Measurement error is the amount of inaccuracy. 

Precision is a measure of how well a result can be determined (without 
reference to a theoretical or true value). It is the degree of consistency and 
agreement among independent measurements of the same quantity; also 
the reliability or reproducibility of the result. 

The uncertainty estimate associated with a measurement should account 
for both the accuracy and precision of the measurement. 

 

Note: Unfortunately the terms error and uncertainty are often used interchangeably to 
describe both imprecision and inaccuracy. This usage is so common that it is impossible 
to avoid entirely. Whenever you encounter these terms, make sure you understand 
whether they refer to accuracy or precision, or both. 

Notice that in order to determine the accuracy of a particular measurement, we have 
to know the ideal, true value. Sometimes we have a “textbook” measured value, which is 
well known, and we assume that this is our “ideal” value, and use it to estimate the 
accuracy of our result. Other times we know a theoretical value, which is calculated from 
basic principles, and this also may be taken as an “ideal” value. But physics is an 
empirical science, which means that the theory must be validated by experiment, and not 
the other way around. We can escape these difficulties and retain a useful definition of 
accuracy by assuming that, even when we do not know the true value, we can rely on the 
best available accepted value with which to compare our experimental value. 

For our example with the gold ring, there is no accepted value with which to compare, 
and both measured values have the same precision, so we have no reason to believe one 
more than the other. We could look up the accuracy specifications for each balance as 
provided by the manufacturer (the Appendix at the end of this lab manual contains 
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accuracy data for most instruments you will use), but the best way to assess the accuracy 
of a measurement is to compare with a known standard. For this situation, it may be 
possible to calibrate the balances with a standard mass that is accurate within a narrow 
tolerance and is traceable to a primary mass standard at the National Institute of 
Standards and Technology (NIST). Calibrating the balances should eliminate the 
discrepancy between the readings and provide a more accurate mass measurement. 

 

Precision is often reported quantitatively by using relative or fractional 
uncertainty: 

 quantity measured

yuncertaint
 ty  UncertainRelative =

 (1) 

For example, m = 75.5 ± 0.5 g has a fractional uncertainty of: 
%7.0600.0

5.75

5.0 ==
g

g

 

 

Accuracy is often reported quantitatively by using relative error: 

  valueexpected

 valueexpected -  valuemeasured
 Error  Relative =

 (2) 

If the expected value for m is 80.0 g, then the relative error is: 

 

Note:  The minus sign indicates that the measured value is less than the expected 
value. 

When analyzing experimental data, it is important that you understand the difference 
between precision and accuracy. Precision indicates the quality of the measurement, 
without any guarantee that the measurement is “correct.” Accuracy, on the other hand, 
assumes that there is an ideal value, and tells how far your answer is from that ideal, 
“right” answer. These concepts are directly related to random and systematic 
measurement errors. 

 

%6.5056.0
0.80

0.805.75 −=−=−
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Types of Errors 
Measurement errors may be classified as either random or systematic, depending on 

how the measurement was obtained (an instrument could cause a random error in one 
situation and a systematic error in another). 

Random errors are statistical fluctuations (in either direction) in the 
measured data due to the precision limitations of the measurement device.  
Random errors can be evaluated through statistical analysis and can be 
reduced by averaging over a large number of observations (see standard 
error). 

Systematic errors are reproducible inaccuracies that are consistently in 
the same direction.  These errors are difficult to detect and cannot be 
analyzed statistically. If a systematic error is identified when calibrating 
against a standard, applying a correction or correction factor to 
compensate for the effect can reduce the bias. Unlike random errors, 
systematic errors cannot be detected or reduced by increasing the number 
of observations. 

When making careful measurements, our goal is to reduce as many sources of error as 
possible and to keep track of those errors that we can not eliminate. It is useful to know 
the types of errors that may occur, so that we may recognize them when they 
arise.Common sources of error in physics laboratory experiments: 

Incomplete definition (may be systematic or random) - One reason that it is impossible 
to make exact measurements is that the measurement is not always clearly defined. For 
example, if two different people measure the length of the same string, they would 
probably get different results because each person may stretch the string with a different 
tension. The best way to minimize definition errors is to carefully consider and specify 
the conditions that could affect the measurement. 

Failure to account for a factor (usually systematic) – The most challenging part of 
designing an experiment is trying to control or account for all possible factors except the 
one independent variable that is being analyzed. For instance, you may inadvertently 
ignore air resistance when measuring free-fall acceleration, or you may fail to account for 
the effect of the Earth’s magnetic field when measuring the field near a small magnet. 
The best way to account for these sources of error is to brainstorm with your peers about 
all the factors that could possibly affect your result. This brainstorm should be done 
before beginning the experiment in order to plan and account for the confounding factors 
before taking data. Sometimes a correction can be applied to a result after taking data to 
account for an error that was not detected earlier. 
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Environmental factors (systematic or random) - Be aware of errors introduced by your 
immediate working environment. You may need to take account for or protect your 
experiment from vibrations, drafts, changes in temperature, and electronic noise or other 
effects from nearby apparatus. 

Instrument resolution (random) - All instruments have finite precision that limits the 
ability to resolve small measurement differences. For instance, a meter stick cannot be 
used to distinguish distances to a precision much better than about half of its smallest 
scale division (0.5 mm in this case). One of the best ways to obtain more precise 
measurements is to use a null difference method instead of measuring a quantity directly. 
Null or balance methods involve using instrumentation to measure the difference between 
two similar quantities, one of which is known very accurately and is adjustable. The 
adjustable reference quantity is varied until the difference is reduced to zero. The two 
quantities are then balanced and the magnitude of the unknown quantity can be found by 
comparison with a measurement standard. With this method, problems of source 
instability are eliminated, and the measuring instrument can be very sensitive and does 
not even need a scale. 

Calibration (systematic) – Whenever possible, the calibration of an instrument should be 
checked before taking data. If a calibration standard is not available, the accuracy of the 
instrument should be checked by comparing with another instrument that is at least as 
precise, or by consulting the technical data provided by the manufacturer.  Calibration 
errors are usually linear (measured as a fraction of the full scale reading), so that larger 
values result in greater absolute errors. 

Zero offset (systematic) - When making a measurement with a micrometer caliper, 
electronic balance, or electrical meter, always check the zero reading first. Re-zero the 
instrument if possible, or at least measure and record the zero offset so that readings can 
be corrected later. It is also a good idea to check the zero reading throughout the 
experiment.  Failure to zero a device will result in a constant error that is more significant 
for smaller measured values than for larger ones. 

Physical variations (random) - It is always wise to obtain multiple measurements over 
the widest range possible. Doing so often reveals variations that might otherwise go 
undetected.  These variations may call for closer examination, or they may be combined 
to find an average value. 

Parallax (systematic or random) - This error can occur whenever there is some distance 
between the measuring scale and the indicator used to obtain a measurement.  If the 
observer’s eye is not squarely aligned with the pointer and scale, the reading may be too 
high or low (some analog meters have mirrors to help with this alignment). 



Measurements & Error Analysis 

 

 
 

 University of North Carolina 

 

 
 

22

Instrument drift (systematic) - Most electronic instruments have readings that drift over 
time.  The amount of drift is generally not a concern, but occasionally this source of error 
can be significant. 

Lag time and hysteresis (systematic) - Some measuring devices require time to reach 
equilibrium, and taking a measurement before the instrument is stable will result in a 
measurement that is too high or low. A common example is taking temperature readings 
with a thermometer that has not reached thermal equilibrium with its environment.  A 
similar effect is hysteresis where the instrument readings lag behind and appear to have a 
“memory” effect, as data are taken sequentially moving up or down through a range of 
values. Hysteresis is most commonly associated with materials that become magnetized 
when a changing magnetic field is applied. 

Personal errors come from carelessness, poor technique, or bias on the part of the 
experimenter. The experimenter may measure incorrectly, or may use poor technique in 
taking a measurement, or may introduce a bias into measurements by expecting (and 
inadvertently forcing) the results to agree with the expected outcome. 

Gross personal errors, sometimes called mistakes or blunders, should be 
avoided and corrected if discovered. As a rule, personal errors are 
excluded from the error analysis discussion because it is generally 
assumed that the experimental result was obtained by following correct 
procedures. The term human error should also be avoided in error 
analysis discussions because it is too general to be useful. 

Estimating Experimental Uncertainty for a Single Me asurement 
Any measurement you make will have some uncertainty associated with it, no matter 

the precision of your measuring tool. So how do you determine and report this 
uncertainty? 

The uncertainty of a single measurement is limited by the precision and 
accuracy of the measuring instrument, along with any other factors that 
might affect the ability of the experimenter to make the measurement. 

For example, if you are trying to use a meter stick to measure the diameter of a tennis 
ball, the uncertainty might be ± 5 mm, but if you used a Vernier caliper, the uncertainty 
could be reduced to maybe ± 2 mm. The limiting factor with the meter stick is parallax, 
while the second case is limited by ambiguity in the definition of the tennis ball’s 
diameter (it’s fuzzy!). In both of these cases, the uncertainty is greater than the smallest 
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divisions marked on the measuring tool (likely 1 mm and 0.05 mm respectively). 
Unfortunately, there is no general rule for determining the uncertainty in all 
measurements. The experimenter is the one who can best evaluate and quantify the 
uncertainty of a measurement based on all the possible factors that affect the result. 
Therefore, the person making the measurement has the obligation to make the best 
judgment possible and report the uncertainty in a way that clearly explains what the 
uncertainty represents: 

Measurement = (measured value ± standard uncertainty) unit of measurement 

where the ± standard uncertainty indicates approximately a 68% confidence interval 
(see sections on Standard Deviation and Reporting Uncertainties). 

Example:  Diameter of tennis ball = 6.7 ± 0.2 cm 

Estimating Uncertainty in Repeated Measurements 
Suppose you time the period of oscillation of a pendulum using a digital instrument 

(that you assume is measuring accurately) and find:  T = 0.44 seconds. This single 
measurement of the period suggests a precision of ±0.005 s, but this instrument precision 
may not give a complete sense of the uncertainty. If you repeat the measurement several 
times and examine the variation among the measured values, you can get a better idea of 
the uncertainty in the period. For example, here are the results of 5 measurements, in 
seconds:  0.46,  0.44,  0.45,  0.44,  0.41. 

For this situation, the best estimate of the period is the average, or mean: 

 

Whenever possible, repeat a measurement several times and average the 
results. This average is generally the best estimate of the “true” value 
(unless the data set is skewed by one or more outliers which should be 
examined to determine if they are bad data points that should be omitted 
from the average or valid measurements that require further investigation). 
Generally, the more repetitions you make of a measurement, the better this 
estimate will be, but be careful to avoid wasting time taking more 
measurements than is necessary for the precision required. 

 

N

xxx N+++= ...
  (mean) Average 21
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Consider, as another example, the measurement of the width of a piece of paper using 
a meter stick. Being careful to keep the meter stick parallel to the edge of the paper (to 
avoid a systematic error which would cause the measured value to be consistently higher 
than the correct value), the width of the paper is measured at a number of points on the 
sheet, and the values obtained are entered in a data table. Note that the last digit is only a 
rough estimate, since it is difficult to read a meter stick to the nearest tenth of a millimeter 
(0.01 cm). 

Observation Width (cm) 

#1 31.33 

#2 31.15 

#3 31.26 

#4 31.02 

#5 31.20 

 

 

 

This average is the best available estimate of the width of the piece of paper, but it is 
certainly not exact. We would have to average an infinite number of measurements to 
approach the true mean value, and even then, we are not guaranteed that the mean value is 
accurate because there is still some systematic error from the measuring tool, which can 
never be calibrated perfectly.  So how do we express the uncertainty in our average value? 

One way to express the variation among the measurements is to use the average 
deviation.  This statistic tells us on average (with 50% confidence) how much the 
individual measurements vary from the mean. 

However, the standard deviation is the most common way to characterize the spread 
of a data set.  The standard deviation is always slightly greater than the average 
deviation, and is used because of its association with the normal distribution that is 
frequently encountered in statistical analyses. 

 

N

xxxxxx
d N ||...||||

   Deviation, Average 21 −++−+−=

Average = sum of observed widths
no . of observations

 = 155.96 cm
5

 = 31.19 cm
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Standard Deviation 
To calculate the standard deviation for a sample of N measurements: 

1. Sum all the measurements and divide by N to get the average, or mean. 
2. Now, subtract this average from each of the N measurements to obtain N 

“deviations”.  
3. Square each of these N deviations and add them all up. 
4. Divide this result by (N-1) and take the square root. 
 

 

 

We can write out the formula for the standard deviation as follows. Let the N 
measurements be called x1, x2, ..., xN. Let the average of the N values be called x . Then 
each deviation is given by 

xxx ii −=δ , for i = 1, 2, ..., N. The standard deviation is: 

( )
( ) ( )11

...
222

2
2
1

−
=

−
+++

= ∑
N

x

N

xxx
s

iN
δδδδ

 

In our previous example, the average width x  is 31.19 cm. The deviations are: 

 

Observation Width (cm) Deviation (cm) 

#1 31.33 +0
.14 

= 31.33 - 31.19 

#2 31.15 -
0.04 

= 31.15 - 31.19 

#3 31.26 +0
.07 

= 31.26 - 31.19 

#4 31.02 -
0.17 

= 31.02 - 31.19 

#5 31.20 +0
.01 

= 31.20 - 31.19 
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The average deviation is: d  = 0.086 cm 

 

The standard deviation is: 

 

The significance of the standard deviation is this: if you now make one more 
measurement using the same meter stick, you can reasonably expect (with about 68% 
confidence) that the new measurement will be within 0.12 cm of the estimated average of 
31.19 cm. In fact, it is reasonable to use the standard deviation as the uncertainty 
associated with this single new measurement.  However, the uncertainty of the average 
value is the standard deviation of the mean, which is always less than the standard 
deviation (see next section). 

Consider an example where 100 measurements of a quantity were made. The average 
or mean value was 10.5 and the standard deviation was s = 1.83. The figure below is a 
histogram of the 100 measurements, which shows how often a certain range of values 
was measured. For example, in 20 of the measurements, the value was in the range 9.5 to 
10.5, and most of the readings were close to the mean value of 10.5. The standard 
deviation s for this set of measurements is roughly how far from the average value most 
of the readings fell. For a large enough sample, approximately 68% of the readings will 
be within one standard deviation of the mean value, 95% of the readings will be in the 
interval x  ± 2s, and nearly all (99.7%) of readings will lie within 3 standard deviations 
from the mean. The smooth curve superimposed on the histogram is the gaussian or 
normal distribution predicted by theory for measurements involving random errors. As 
more and more measurements are made, the histogram will more closely follow the bell-
shaped gaussian curve, but the standard deviation of the distribution will remain 
approximately the same.  

     

cm 12.0
15

)01.0()17.0()07.0()04.0()14.0( 22222

=
−

++++=s
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Standard Deviation of the Mean (Standard Error) 
When we report the average value of N measurements, the uncertainty we should 

associate with this average value is the standard deviation of the mean, often called the 
standard error (SE). 

 

 N

s=    (SE),Error  Standardor  Mean,  theofDeviation  Standard xσ

 (3) 

The standard error is smaller than the standard deviation by a factor of N1 . This 
reflects the fact that we expect the uncertainty of the average value to get smaller when 
we use a larger number of measurements, N. In the previous example, we find the 
standard error is 0.05 cm, where we have divided the standard deviation of 0.12 by √5.  
The final result should then be reported as: 

Average paper width = 31.19 ± 0.05 cm 

Anomalous Data 
The first step you should take in analyzing data (and even while taking data) is to 

examine the data set as a whole to look for patterns and outliers. Anomalous data points 
that lie outside the general trend of the data may suggest an interesting phenomenon that 
could lead to a new discovery, or they may simply be the result of a mistake or random 
fluctuations. In any case, an outlier requires closer examination to determine the cause of 
the unexpected result. Extreme data should never be “thrown out” without clear 
justification and explanation, because you may be discarding the most significant part of 
the investigation! However, if you can clearly justify omitting an inconsistent data point, 
then you should exclude the outlier from your analysis so that the average value is not 
skewed from the “true” mean. 

Fractional Uncertainty Revisited 
When a reported value is determined by taking the average of a set of independent 

readings, the fractional uncertainty is given by the ratio of the uncertainty divided by the 
average value. For this example, 

 Fractional uncertainty = 
uncertainty 

average  = 0.05 cm 
31.19 cm 

 = 0.0016 ≈  0.2% 
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Note that the fractional uncertainty is dimensionless but is often reported as a 
percentage or in parts per million (ppm) to emphasize the fractional nature of the value. A 
scientist might also make the statement that this measurement “is good to about 1 part in 
500” or “precise to about 0.2%”. 

The fractional uncertainty is also important because it is used in propagating 
uncertainty in calculations using the result of a measurement, as discussed in the next 
section. 

Propagation of Uncertainty 
Suppose we want to determine a quantity f, which depends on x and maybe several 

other variables y, z,etc. We want to know the error in f if we measure x, y, ... with errors 
σx, σy, … 

 

Examples: f = xy  (Area of a rectangle) 

  f = p cosθ (x-component of momentum) 

  f = x / t  (velocity) 

For a single-variable function f (x), the deviation in f can be related to the deviation in 
x using calculus: 

x
dx

df
f δδ 







=
 

 

Thus, taking the square and the average: 

2
2

2 x
dx

df
f δδ 







=
 

and using the definition of σ, we get: 

xf dx

df σσ =
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Examples: 

a) f = √x      b) f = x2 

xdx

df

2

1=      x
dx

df
2=  

x
x

f
2

σ
σ = ,  or  

xf
xf σσ

2

1=    
xf

xf σσ
2=  

c) f = cosθ 

θ
θ

sin−=
d

df
 

θσθσ sin=f ,  or  θσθ
σ

tan=
f

f
 

Note:  in this situation, σθ must be in radians. 

In the case where f depends on two or more variables, the derivation above can be 
repeated with minor modification. For two variables, f(x, y), we have: 

y
y

f
x

x

f
f δδδ 









∂
∂

+








∂
∂

=  

The partial derivative 
x

f

∂
∂

 means differentiating f with respect to x holding the other 

variables fixed. Taking the square and the average, we get the law of propagation of 
uncertainty: 
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f
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f
x

x

f
f δδδδδ 









∂
∂










∂
∂+









∂
∂+









∂
∂= 2)()()( 2

2

2
2

2

 (4) 

 

If the measurements of x and y are uncorrelated, then 0=yxδδ , and we get: 

2

2

2
2

yxf y

f

x

f σσσ 
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Examples: 

a) f = x + y 

1    ,1 =
∂
∂=

∂
∂

y

f

x

f
 

22
yxf σσσ +=∴  

 

 

b) f = xy 

x
y

f
y

x

f =
∂
∂=

∂
∂

    ,  

2222
yxf xy σσσ +=∴  

Dividing the previous equation by f = xy, we get: 

22











+







=
yxf

yxf σσσ
 

c) f = x / y 

2
    ,

1

y

x

y

f

yx

f −=
∂
∂=

∂
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2

2

2

2

2
1

yxf
y

x

y
σσσ 








+








=∴  

 

 

When adding (or subtracting) independent measurements, the absolute uncertainty of the 
sum (or difference) is the root sum of squares (RSS) of the individual absolute uncertainties.  
When adding correlated measurements, the uncertainty in the result is simply the sum of the 
absolute uncertainties, which is always a larger uncertainty estimate than adding in 
quadrature (RSS). Adding or subtracting a constant does not change the absolute uncertainty 
of the calculated value as long as the constant is an exact value.   
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Dividing the previous equation by f = x / y, we get: 

22









+







=
yxf

yxf σσσ
  

 

Note that the relative uncertainty in f, as shown in (b) and (c) above, has the same 
form for multiplication and division:  the relative uncertainty in a product or quotient 
depends on the relative uncertainty of each individual term.  

 

Example:  Find uncertainty in v, where s 0.11.2     ,m/s 1.08.9  with   2 ±=±== taatv  

( ) ( ) 3.1%or     031.0029.0010.0
2.1

1.0

8.9

1.0 22
2222

=+=






+






=






+






=
tav

tav σσσ
 

Notice that the relative uncertainty in t (2.9%) is significantly greater than the relative 
uncertainty for a  (1.0%), and therefore the relative uncertainty in v is essentially the same 
as for t  (about 3%). 

 

Graphically, the RSS is like the Pythagorean theorem: 

The total uncertainty is the length of the hypotenuse of a right triangle 
with legs the length of each uncertainty component. 

Timesaving approximation: “A chain is only as strong as its weakest 
link.” 

If one of the uncertainty terms is more than 3 times greater than the other 
terms, the root-squares formula can be skipped, and the combined 
uncertainty is simply the largest uncertainty. This shortcut can save a lot of 
time without losing any accuracy in the estimate of the overall uncertainty. 

1.0% 

3.1% 

2.9% 

When multiplying (or dividing) independent measurements, the relative uncertainty of the 
product (quotient) is the RSS of the individual relative uncertainties.  When multiplying 
correlated measurements, the uncertainty in the result is just the sum of the relative uncertainties, 
which is always a larger uncertainty estimate than adding in quadrature (RSS).  Multiplying or 
dividing by a constant does not change the relative uncertainty of the calculated value. 
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The Upper-Lower Bound Method of Uncertainty Propaga tion 
An alternative, and sometimes simpler procedure, to the tedious propagation of 

uncertainty law is the upper-lower bound method of uncertainty propagation. This 
alternative method does not yield a standard uncertainty estimate (with a 68% confidence 
interval), but it does give a reasonable estimate of the uncertainty for practically any 
situation. The basic idea of this method is to use the uncertainty ranges of each variable to 
calculate the maximum and minimum values of the function. You can also think of this 
procedure as examining the best and worst case scenarios. For example, suppose you 
measure an angle to be:            θ = 25° ± 1° and you needed to find f = cosθ, then: 

  fmax = cos(26°) =  0.8988 

fmin = cos(24°) =  0.9135 

∴ f = 0.906 ± 0.007   (where 0.007 is half the difference between fmax and 
fmin) 

Note that even though θ was only measured to 2 significant figures, f is known to 3 
figures. By using the propagation of uncertainty law:  σf = |sinθ|σθ = (0.423)(π/180) = 
0.0074    (same result as above) 

The uncertainty estimate from the upper-lower bound method is generally 
larger than the standard uncertainty estimate found from the propagation of 
uncertainty law, but both methods will give a reasonable estimate of the 
uncertainty in a calculated value. 

The upper-lower bound method is especially useful when the functional relationship 
is not clear or is incomplete. One practical application is forecasting the expected range in 
an expense budget. In this case, some expenses may be fixed, while others may be 
uncertain, and the range of these uncertain terms could be used to predict the upper and 
lower bounds on the total expense. 

Significant Figures     
The number of significant figures in a value can be defined as all the digits between 

and including the first non-zero digit from the left, through the last digit. For instance, 
0.44 has two significant figures, and the number 66.770 has 5 significant figures. Zeroes 
are significant except when used to locate the decimal point, as in the number 0.00030, 
which has 2 significant figures. Zeroes may or may not be significant for numbers like 
1200, where it is not clear whether two, three, or four significant figures are indicated. To 
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avoid this ambiguity, such numbers should be expressed in scientific notation to (e.g. 
1.20 x 103 clearly indicates three significant figures). 

When using a calculator, the display will often show many digits, only some of which 
are meaningful (significant in a different sense). For example, if you want to estimate the 
area of a circular playing field, you might pace off the radius to be 9 meters and use the 
formula: A = πr2. When you compute this area, the calculator might report a value of 
254.4690049 m2. It would be extremely misleading to report this number as the area of 
the field, because it would suggest that you know the area to an absurd degree of 
precision - to within a fraction of a square millimeter! Since the radius is only known to 
one significant figure, the final answer should also contain only one significant figure:  
Area = 3 × 102 m2. 

  

From this example, we can see that the number of significant figures reported for a 
value implies a certain degree of precision. In fact, the number of significant figures 
suggests a rough estimate of the relative uncertainty: 

 

 

The number of significant figures implies an approximate relative 
uncertainty: 

1 significant figure suggests a relative uncertainty of about 10% to 100% 

2 significant figures suggest a relative uncertainty of about 1% to 10% 

3 significant figures suggest a relative uncertainty of about 0.1% to 1% 

To understand this connection more clearly, consider a value with 2 significant 
figures, like 99, which suggests an uncertainty of ±1, or a relative uncertainty of ±1/99 = 
±1%. (Actually some people might argue that the implied uncertainty in 99 is ±0.5 since 
the range of values that would round to 99 are 98.5 to 99.4. But since the uncertainty here 
is only a rough estimate, there is not much point arguing about the factor of two.) The 
smallest 2-significant figure number, 10, also suggests an uncertainty of ±1, which in this 
case is a relative uncertainty of ±1/10 = ±10%. The ranges for other numbers of 
significant figures can be reasoned in a similar manner. 

 

 

 



Measurements & Error Analysis 

 

 
 

 University of North Carolina 

 

 
 

34

Use of Significant Figures for Simple Propagation o f Uncertainty 

By following a few simple rules, significant figures can be used to find the 
appropriate precision for a calculated result for the four most basic math functions, all 
without the use of complicated formulas for propagating uncertainties. 

For multiplication and division, the number of significant figures that are 
reliably known in a product or quotient is the same as the smallest number 
of significant figures in any of the original numbers. 

 

Example:  6.6    (2 significant figures) 

   x 7328.7    (5 significant figures) 

     48369.42 = 48 x 103   (2 significant figures) 
 

For addition and subtraction, the result should be rounded off to the last 
decimal place reported for the least precise number. 

 

 

Examples: 223.64  5560.5 

  +54   +    0.008 

             278  5560.5 
 

If a calculated number is to be used in further calculations, it is good practice to keep 
one extra digit to reduce rounding errors that may accumulate. Then the final answer 
should be rounded according to the above guidelines. 

 

Uncertainty, Significant Figures, and Rounding 

For the same reason that it is dishonest to report a result with more significant figures 
than are reliably known, the uncertainty value should also not be reported with excessive 
precision.  

For example, it would be unreasonable for a student to report a result like: 
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measured density = 8.93 ± 0.475328 g/cm3 WRONG! 

The uncertainty in the measurement cannot possibly be known so precisely! In most 
experimental work, the confidence in the uncertainty estimate is not much better than 
about ±50% because of all the various sources of error, none of which can be known 
exactly. Therefore, uncertainty values should be stated to only one significant figure (or 
perhaps 2 sig. figs. if the first digit is a 1). 

 

Because experimental uncertainties are inherently imprecise, they should 
be rounded to one, or at most two, significant figures. 

To help give a sense of the amount of confidence that can be placed in the standard 
deviation, the following table indicates the relative uncertainty associated with the 
standard deviation for various sample sizes.  Note that in order for an uncertainty value to 
be reported to 3 significant figures, more than 10,000 readings would be required to 
justify this degree of precision! 

 

N 

Relative 

Uncert.* 

Sig.Figs. 

Valid 

Implied 

Uncertainty 

2 71%    1  ±10% to 100% 
3 50%    1 ± 10% to 100% 
4 41%    1 ± 10% to 100% 
5 35%    1 ± 10% to 100% 
10 24%    1 ± 10% to 100% 
20 16%    1 ± 10% to 100% 
30 13%    1 ± 10% to 100% 
50 10%    2   ± 1% to 10% 
100 7%    2   ± 1% to 10% 
10000 0.7%    3 ±0.1% to 1% 

 

*The relative uncertainty is given by the approximate formula: 

When an explicit uncertainty estimate is made, the uncertainty 
term indicates how many significant figures should be reported in the measured value 
(not the other way around!). For example, the uncertainty in the density measurement 
above is about 0.5 g/cm3, so this tells us that the digit in the tenths place is uncertain, and 
should be the last one reported. The other digits in the hundredths place and beyond are 
insignificant, and should not be reported: measured density = 8.9 ± 0.5 g/cm3 RIGHT! 

)1(2

1

−
=

Nσ
σσ
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An experimental value should be rounded to be consistent with the 
magnitude of its uncertainty.  This generally means that the last significant 
figure in any reported value should be in the same decimal place as the 
uncertainty. 

In most instances, this practice of rounding an experimental result to be consistent 
with the uncertainty estimate gives the same number of significant figures as the rules 
discussed earlier for simple propagation of uncertainties for adding, subtracting, 
multiplying, and dividing. 

Caution:  When conducting an experiment, it is important to keep in mind that 
precision is expensive (both in terms of time and material resources). Do not waste your 
time trying to obtain a precise result when only a rough estimate is required. The cost 
increases exponentially with the amount of precision required, so the potential benefit of 
this precision must be weighed against the extra cost. 

Combining and Reporting Uncertainties 
In 1993, the International Standards Organization (ISO) published the first official 

worldwide Guide to the Expression of Uncertainty in Measurement.  Before this time, 
uncertainty estimates were evaluated and reported according to different conventions 
depending on the context of the measurement or the scientific discipline. Here are a few 
key points from this 100-page guide, which can be found in modified form on the NIST 
website (see References). 

When reporting a measurement, the measured value should be reported along with an 
estimate of the total combined standard uncertainty Uc of the value. The total 
uncertainty is found by combining the uncertainty components based on the two types of 
uncertainty analysis: 

Type A evaluation of standard uncertainty – method of evaluation of uncertainty 
by the statistical analysis of a series of observations. This method primarily includes 
random errors.  

Type B evaluation of standard uncertainty – method of evaluation of uncertainty 
by means other than the statistical analysis of series of observations. This method 
includes systematic errors and any other uncertainty factors that the experimenter believes 
are important. 

The individual uncertainty components ui should be combined using the law of 
propagation of uncertainties, commonly called the “root-sum-of-squares” or “RSS” 
method. When this is done, the combined standard uncertainty should be equivalent to the 
standard deviation of the result, making this uncertainty value correspond with a 68% 
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confidence interval. If a wider confidence interval is desired, the uncertainty can be 
multiplied by a coverage factor (usually k = 2 or 3) to provide an uncertainty range that 
is believed to include the true value with a confidence of 95% (for k = 2) or 99.7% (for k 
= 3).  If a coverage factor is used, there should be a clear explanation of its meaning so 
there is no confusion for readers interpreting the significance of the uncertainty value. 

You should be aware that the ± uncertainty notation may be used to indicate different 
confidence intervals, depending on the scientific discipline or context. For example, a 
public opinion poll may report that the results have a margin of error of ±3%, which 
means that readers can be 95% confident (not 68% confident) that the reported results are 
accurate within 3 percentage points. Similarly, a manufacturer’s tolerance rating 
generally assumes a 95% or 99% level of confidence. 

Conclusion: “When do measurements agree with each o ther?” 
We now have the resources to answer the fundamental scientific question that was 

asked at the beginning of this error analysis discussion: “Does my result agree with a 
theoretical prediction or results from other experiments?” 

Generally speaking, a measured result agrees with a theoretical prediction if the 
prediction lies within the range of experimental uncertainty. Similarly, if two measured 
values have standard uncertainty ranges that overlap, then the measurements are said to 
be consistent (they agree). If the uncertainty ranges do not overlap, then the 
measurements are said to be discrepant (they do not agree). However, you should 
recognize that these overlap criteria can give two opposite answers depending on the 
evaluation and confidence level of the uncertainty. It would be unethical to arbitrarily 
inflate the uncertainty range just to make a measurement agree with an expected value.  A 
better procedure would be to discuss the size of the difference between the measured and 
expected values within the context of the uncertainty, and try to discover the source of the 
discrepancy if the difference is truly significant.  To examine your own data, you are 
encouraged to use the Measurement Comparison tool available on the lab website:  
http://www.physics.unc.edu/labs 

Here are some examples using this graphical analysis tool: 

A = 1.2 ± 0.4 

B = 1.8 ± 0.4 

These measurements agree within 
their uncertainties, despite the fact that 
the percent difference between their 
central values is 40%. 
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However, with half the uncertainty (±0.2), these 
same measurements do not agree since their 
uncertainties do not overlap.  Further investigation 
would be needed to determine the cause for the 
discrepancy. Perhaps the uncertainties were 
underestimated, there may have been a systematic 
error that was not considered, or there may be a true difference between these values. 

An alternative method for determining agreement between values is to calculate the 
difference between the values divided by their combined standard uncertainty.  This ratio 
gives the number of standard deviations separating the two values.  If this ratio is less 
than 1.0, then it is reasonable to conclude that the values agree.  If the ratio is more than 
2.0, then it is highly unlikely (less than about 5% probability) that the values are the 
same. 

Example from above with u = 0.4:  1.1
57.0

|8.12.1| =−
    Therefore, A and B likely agree. 

Example from above with u = 0.2:  1.2
28.0

|8.12.1| =−
   Therefore, it is unlikely that A 

and B agree.  
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