
Chapter 17

The Circular Functions
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Figure 17.1: Cosmo moves
counterclockwise maintain-
ing a tight tether. Where’s

Cosmo?

Suppose Cosmo begins at location R and walks in a coun-
terclockwise direction, always maintaining a tight 20 ft
long tether. As Cosmo moves around the circle, how can
we describe his location at any given instant?

In one sense, we have already answered this question:
The measure of ∠RPS1 exactly pins down a location on
the circle of radius 20 feet. But, we really might prefer
a description of the horizontal and vertical coordinates of
Cosmo; this would tie in better with the coordinate system
we typically use. Solving this problem will require NEW
functions, called the circular functions.

17.1 Sides and Angles of a Right Triangle
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Mathmatically modeling the bank shot.

Figure 17.2: A pocket bil-
liard banking problem.

Example 17.1.1. You are preparing to make your final

shot at the British Pocket Billiard World Championships.
The position of your ball is as in Figure 17.2, and you must

play the ball off the left cushion into the lower-right corner

pocket, as indicated by the dotted path. For the big money,

where should you aim to hit the cushion?

Solution. This problem depends on two basic facts. First,
the angles of entry and exit between the path the cushion
will be equal. Secondly, the two obvious right triangles
in this picture are similar triangles. Let x represent the
distance from the bottom left corner to the impact point
of the ball’s path:

Properties of similar triangles tell us that the ratios of
common sides are equal: 4

5−x
= 12

x
. If we solve this equation

for x, we obtain x = 15
4
= 3.75 feet.

221



222 CHAPTER 17. THE CIRCULAR FUNCTIONS

This discussion is enough to win the tourney. But, of course, there
are still other questions we can ask about this simple example: What is
the angle θ? That is going to require substantially more work; indeed the
bulk of this Chapter! It turns out, there is a lot of mathematical mileage
in the idea of studying ratios of sides of right triangles. The first step,
which will get the ball rolling, is to introduce new functions whose very
definition involves relating sides and angles of right triangles.

17.2 The Trigonometric Ratios

hypotenuse
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side opposite θ

θ

θ
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C

Figure 17.3: Labeling the
sides of a right triangle.

From elementary geometry, the sum of the angles of any
triangle will equal 180◦. Given a right triangle△ABC, since
one of the angles is 90◦, the remaining two angles must be
acute angles; i.e., angles of measure between 0◦ and 90◦.
If we specify one of the acute angles in a right triangle
△ABC, say angle θ, we can label the three sides using
this terminology. We then consider the following three
ratios of side lengths, referred to as trigonometric ratios:

sin(θ)
def
=

length of side opposite θ

length of hypotenuse
(17.1)

cos(θ)
def
=

length of side adjacent θ

length of hypotenuse
(17.2)

tan(θ)
def
=

length of side opposite θ

length of side adjacent to θ
. (17.3)

For example, we have three right triangles in Figure 17.4; you can
verify that the Pythagorean Theorem holds in each of the cases. In the
left-hand triangle, sin(θ) = 5

13
, cos(θ) = 12

13
, tan(θ) = 5

12
. In the middle

triangle, sin(θ) = 1√
2
, cos(θ) = 1√

2
, tan(θ) = 1. In the right-hand triangle,

sin(θ) = 1
2
, cos(θ) =

√
3
2
, tan(θ) = 1√

3
. The symbols “sin”, “cos”, and “tan”

are abbreviations for the words sine, cosine and tangent, respectively.
As we have defined them, the trigonometric ratios depend on the dimen-
sions of the triangle. However, the same ratios are obtained for any right
triangle with acute angle θ. This follows from the properties of similar
triangles. Consider Figure 17.5. Notice △ABC and △ADE are similar. If

we use △ABC to compute cos(θ), then we find cos(θ) = |AC|

|AB|
. On the other

hand, if we use △ADE, we obtain cos(θ) = |AE|

|AD|
. Since the ratios of com-

mon sides of similar triangles must agree, we have cos(θ) =
|AC|

|AB|
=

|AE|

|AD|
,
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Figure 17.4: Computing trigonometric ratios for selected right triangles.

which is what we wanted to be true. The same argument can be used
to show that sin(θ) and tan(θ) can be computed using any right triangle
with acute angle θ.

A

B

C

D

E

θ

Figure 17.5: Applying
trigonometric ratios to any

right triangle.

Except for some “rigged” right triangles, it is not easy
to calculate the trigonometric ratios. Before the 1970’s,
approximate values of sin(θ), cos(θ), tan(θ) were listed
in long tables or calculated using a slide rule. Today, a
scientific calculator saves the day on these computations.
Most scientific calculators will give an approximation for
the values of the trigonometric ratios. However, it is good
to keep in mind we can compute the EXACT values of the
trigonometric ratios when θ = 0, π

6
, π
4
, π
3
, π
2
radians or,

equivalently, when θ = 0◦, 30◦, 45◦, 60◦, 90◦.

Angle θ Trigonometric Ratio

Deg Rad sin(θ) cos(θ) tan(θ)

0◦ 0 0 1 0

30◦ π
6

1
2

√
3
2

1√
3

45◦ π
4

√
2
2

√
2
2

1

60◦ π
3

√
3
2

1
2

√
3

90◦ π
2

1 0 Undefined

Table 17.1: Exact Trigonometric Ratios
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Some people make a big deal of “approximate” vs. “exact” answers; we
won’t worry about it here, unless we are specifically asked for an exact
answer. However, here is something we will make a big deal about:

When computing values of cos(θ), sin(θ), and tan(θ) on your calcu-
lator, make sure you are using the correct “angle mode” when entering
θ; i.e. “degrees” or “radians”.

CAUTION
!!!

!!!

For example, if θ = 1◦, then cos(1◦) = 0.9998, sin(1◦) = 0.0175, and
tan(1◦) = 0.0175. In contrast, if θ = 1 radians, then cos(1) = 0.5403,
sin(1) = 0.8415, and tan(1) = 1.5574.

17.3 Applications

h

h sin(θ)

h cos(θ)

a tan(θ)

a

θθ

Figure 17.6: What do these
ratios mean?

When confronted with a situation involving a right trian-
gle where the measure of one acute angle θ and one side
are known, we can solve for the remaining sides using the
appropriate trigonometric ratios. Here is the key picture
to keep in mind:

Important Facts 17.3.1 (Trigonometric ratios).
Given a right triangle, the trigonometric ratios relate the

lengths of the sides as shown in Figure 17.6.

Example 17.3.2. To measure the distance across a river for a new bridge,

surveyors placed poles at locations A, B and C. The length |AB| = 100 feet

and the measure of the angle ∠ABC is 31◦18 ′. Find the distance to span the

river. If the measurement of the angle ∠ABC is only accurate within ±2 ′,
find the possible error in |AC|.

A

C

B

d

100

310 18 ′

Figure 17.7: The distance
spanning a river.

Solution. The trigonometric ratio relating these two sides
would be the tangent and we can convert θ into decimal
form, arriving at:

tan(31◦18 ′) = tan(31.3◦) =
|AC|

|BA|
=

d

100

therefore d = 60.8 feet.

This tells us that the bridge needs to span a gap of
60.8 feet. If the measurement of the angle was in error by +2 ′, then
tan(31◦20 ′) = tan(31.3333◦) = 0.6088 and the span is 60.88 ft. On the
other hand, if the measurement of the angle was in error by −2 ′, then
tan(31◦16 ′) = tan(31.2667◦) = 0.6072 and the span is 60.72 ft.
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Figure 17.8: Flying toward a
mountain.

Example 17.3.3. A plane is flying 2000 feet above sea

level toward a mountain. The pilot observes the top of the

mountain to be 18◦ above the horizontal, then immediately

flies the plane at an angle of 20◦ above horizontal. The

airspeed of the plane is 100 mph. After 5 minutes, the

plane is directly above the top of the mountain. How high

is the plane above the top of the mountain (when it passes

over)? What is the height of the mountain?

Solution. We can compute the hypotenuse of △LPT by us-
ing the speed and time information about the plane:

|PT | = (100mph)(5minutes)(1hour/60minutes) =
25

3
miles.

The definitions of the trigonometric ratios show:

|TL| =
25

3
sin(20◦) = 2.850miles, and

|PL| =
25

3
cos(20◦) = 7.831miles.

With this data, we can now find |EL|:

|EL| = |PL| tan(18◦) = 2.544miles.

The height of the plane above the peak is |TE| = |TL|− |EL| = 2.850− 2.544 =

0.306miles = 1,616 feet. The elevation of the peak above sea level is
given by: Peak elevation = plane altitude + |EL| = |SP| + |EL| = 2,000 +

(2.544)(5,280) = 15,432 feet.
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Figure 17.9: Finding the
width of a canyon.

Example 17.3.4. A Forest Service helicopter needs to de-

termine the width of a deep canyon. While hovering, they

measure the angle γ = 48◦ at position B (see picture), then

descend 400 feet to position A and make two measure-

ments of α = 13◦ (the measure of ∠EAD), β = 53◦ (the mea-

sure of ∠CAD). Determine the width of the canyon to the

nearest foot.

Solution. We will need to exploit three right triangles in
the picture: △BCD, △ACD, and △ACE. Our goal is to compute |ED| =

|CD| − |CE|, which suggests more than one right triangle will come into
play.
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The first step is to use △BCD and △ACD to obtain a system of two
equations and two unknowns involving some of the side lengths; we will
then solve the system. From the definitions of the trigonometric ratios,

|CD| = (400+ |AC|) tan(48◦)

|CD| = |AC| tan(53◦).

Plugging the second equation into the first and rearranging we get

|AC| =
400 tan(48◦)

tan(53◦) − tan(48◦)
= 2,053 feet.

Plugging this back into the second equation of the system gives

|CD| = (2053) tan(53◦) = 2724 feet.

The next step is to relate △ACD and △ACE, which can now be done
in an effective way using the calculations above. Notice that the measure
of ∠CAE is β − α = 40◦. We have

|CE| = |AC| tan(40◦) = (2053) tan(40◦) = 1,723 feet.

As noted above, |ED| = |CD| − |CE| = 2,724 − 1,723 = 1,001 feet is the width
of the canyon.

17.4 Circular Functions

S = (x,y)

20

P x

y

θ

R

Figure 17.10: Cosmo on a
circular path.

If Cosmo is located somewhere in the first quadrant of
Figure 17.1, represented by the location S, we can use the
trigonometric ratios to describe his coordinates. Impose
the indicated xy-coordinate system with origin at P and
extract the pictured right triangle with vertices at P and
S. The radius is 20 ft. and applying Fact 17.3.1 gives

S = (x, y) = (20 cos(θ), 20 sin(θ)).

Unfortunately, we run into a snag if we allow Cosmo to
wander into the second, third or fourth quadrant, since
then the angle θ is no longer acute.
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17.4.1 Are the trigonometric ratios functions?

P

O

1

1

radius = 1.

θ

R

A unit circle with

Figure 17.11: Coordinates
of points on the unit circle.

Recall that sin(θ), cos(θ), and tan(θ) are defined for acute
angles θ inside a right triangle. We would like to say that
these three equations actually define functions where the
variable is an angle θ. Having said this, it is natural to ask
if these three equations can be extended to be defined for
ANY angle θ. For example, we need to explain how sin

(

2π
3

)

is defined.
To start, we begin with the unit circle pictured in the

xy-coordinate system. Let θ = ∠ROP be the angle in stan-
dard central position shown in Figure 17.11. If θ is pos-
itive (resp. negative), we adopt the convention that θ is
swept out by counterclockwise (resp. clockwise) rotation
of the initial side OR. The objective is to find the coordinates of the point
P in this figure. Notice that each coordinate of P (the x-coordinate and
the y-coordinate) will depend on the given angle θ. For this reason, we
need to introduce two new functions involving the variable θ.
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Michael
starts here

r = 1 0.025 rad
seckilometer

Figure 17.12: A circular
driving track.

Definition 17.4.1. Let θ be an angle in standard central

position inside the unit circle, as in Figure 17.11. This angle

determines a point P on the unit circle. Define two new

functions, cos(θ) and sin(θ), on the domain of all θ values

as follows:

cos(θ)
def
= horizontal x-coordinate of P on unit circle

sin(θ)
def
= vertical y-coordinate of P on unit circle.

We refer to sin(θ) and cos(θ) as the basic circular func-
tions. Keep in mind that these functions have variables
which are angles (either in degree or radian measure). These functions
will be on your calculator. Again, BE CAREFUL to check the angle mode
setting on your calculator (“degrees” or “radians”) before doing a calcula-
tion.

y-axis

x-axis

M(t) = (x(t),y(t))

0.025 rad
sec

θ(t)

starts here
Michael

Figure 17.13: Modeling
Michael’s location.

Example 17.4.2. Michael is test driving a vehicle counter-

clockwise around a desert test track which is circular of

radius 1 kilometer. He starts at the location pictured, trav-

eling 0.025 rad
sec

. Impose coordinates as pictured. Where is

Michael located (in xy-coordinates) after 18 seconds?

Solution. LetM(t) be the point on the circle of motion rep-
resenting Michael’s location after t seconds and θ(t) the
angle swept out the by Michael after t seconds. Since we
are given the angular speed, we get

θ(t) = 0.025t radians.
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Since the angle θ(t) is in central standard position, we get

M(t) = (cos(θ(t)), sin(θ(t))) = (cos(0.025t), sin(0.025t)).

So, after 18 seconds Michael’s location will beM(18) = (0.9004, 0.4350).

Interpreting the coordinates of the point P = (cos(θ), sin(θ)) in Fig-
ure 17.11 only works if the angle θ is viewed in central standard po-
sition. You must do some additional work if the angle is placed in a
different position; see the next Example.

CAUTION
!!!

!!!

Angela
r = 1 kilometer

0.025 rad
sec

0.03 rad
sec

Michael
starts here

starts here x-axis

y-axis

(a) Angela and Michael on the
same test track.

β(t)

α(t)

θ(t)

0.025 rad
sec

0.03 rad
sec

M(t)

A(t)

Michael
starts here

starts here x-axis

y-axis

Angela

(b) Modeling the motion of
Angela and Michael.

Figure 17.14: Visualizing
motion on a circular track.

Example 17.4.3. Both Angela and Michael are test driving

vehicles counterclockwise around a desert test track which

is circular of radius 1 kilometer. They start at the loca-

tions shown in Figure 17.14(a). Michael is traveling 0.025

rad/sec and Angela is traveling 0.03 rad/sec. Impose co-

ordinates as pictured. Where are the drivers located (in

xy-coordinates) after 18 seconds?

Solution. LetM(t) be the point on the circle of motion rep-
resenting Michael’s location after t seconds. Likewise, let
A(t) be the point on the circle of motion representing An-
gela’s location after t seconds. Let θ(t) be the angle swept
out the by Michael and α(t) the angle swept out by Angela
after t seconds.

Since we are given the angular speeds, we get

θ(t) = 0.025t radians, and

α(t) = 0.03t radians.

From the previous Example 17.4.2,

M(t) = (cos(0.025t), sin(0.025t)), and

M(18) = (0.9004, 0.4350).

Angela’s angle α(t) is NOT in central standard position, so
we must observe that α(t)+π = β(t), where β(t) is in cen-
tral standard position: See Figure 17.14(b). We conclude
that

A(t) = (cos(β(t)), sin(β(t)))

= (cos(π+ 0.03t), sin(π+ 0.03t)).

So, after 18 seconds Angela’s location will be A(18) =

(−0.8577,−0.5141).



17.4. CIRCULAR FUNCTIONS 229

17.4.2 Relating circular functions and right triangles

unit circle (radius = 1)

sin(θ)

cos(θ)

O

θ

P

R

Figure 17.15: The point P in
the first quadrant.

If the point P on the unit circle is located in the first
quadrant, then we can compute cos(θ) and sin(θ) using
trigonometric ratios. In general, it’s useful to relate right
triangles, the unit circle and the circular functions. To de-
scribe this connection, given θ we place it in central stan-
dard position in the unit circle, where ∠ROP = θ. Draw
a line through P perpendicular to the x-axis, obtaining
an inscribed right triangle. Such a right triangle has hy-
potenuse of length 1, vertical side of length labeled b and
horizontal side of length labeled a. There are four cases:
See Figure 17.16.
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CASE I

RRRR
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Figure 17.16: Possible positions of θ on the unit circle.

Case I has already been discussed, arriving at cos(θ) = a and sin(θ) =
b. In Case II , we can interpret cos(θ) = −a, sin(θ) = b. We can reason
similarly in the other Cases III and IV, using Figure 17.16, and we arrive
at this conclusion:

Important Facts 17.4.4 (Circular functions and triangles). View θ as in

Figure 17.16 and form the pictured inscribed right triangles. Then we can

interpret cos(θ) and sin(θ) in terms of these right triangles as follows:

Case I : cos(θ) = a, sin(θ) = b

Case II : cos(θ) = −a, sin(θ) = b

Case III : cos(θ) = −a, sin(θ) = −b

Case IV : cos(θ) = a, sin(θ) = −b
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17.5 What About Other Circles?

T

P

θ

R

unit circleCr

SO

Figure 17.17: Points on
other circles.

What happens if we begin with a circle Cr with radius r
(possibly different than 1) and want to compute the coor-
dinates of points on this circle?

The circular functions can be used to answer this more
general question. Picture our circle Cr centered at the
origin in the same picture with unit circle C1 and the angle
θ in standard central position for each circle. As pictured,
we can view θ = ∠ROP = ∠SOT . If P = (x,y) is our point
on the unit circle corresponding to the angle θ, then the
calculation below shows how to compute coordinates on

general circles:

P = (x,y)

= (cos(θ), sin(θ)) ∈ C1 ⇔ x2 + y2 = 1

⇔ r2x2 + r2y2 = r2

⇔ (rx)2 + (ry)2 = r2

⇔ T = (rx, ry)

= (r cos(θ), r sin(θ)) ∈ Cr.

Important Fact 17.5.1. Let Cr be a circle of radius r centered at the origin

and θ = ∠SOT an angle in standard central position for this circle, as in

Figure 17.17. Then the coordinates of T = (r cos(θ), r sin(θ)).

U
T

S P

Q

R

AB O

α θ

x-axis

y-axis
β = π − α = 2.9416

circle radius = 1

circle radius = 2

circle radius = 3

Figure 17.18: Coordinates
of points on circles.

Examples 17.5.2. Consider the picture below, with θ = 0.8

radians and α = 0.2 radians. What are the coordinates of

the labeled points?

Solution. The angle θ is in standard central position; α is
a central angle, but it is not in standard position. Notice,
β = π − α = 2.9416 is an angle in standard central posi-
tion which locates the same points U, T, S as the angle α.
Applying Definition 17.4.1 on page 227:

P = (cos(0.8), sin(0.8)) = (0.6967, 0.7174)

Q = (2 cos(0.8), 2 sin(0.8)) = (1.3934, 1.4347)

R = (3 cos(0.8), 3 sin(0.8)) = (2.0901, 2.1521)

S = (cos(2.9416), sin(2.9416)) = (−0.9801, 0.1987)

T = (2 cos(2.9416), 2 sin(2.9416)) = (−1.9602, 0.3973)

U = (3 cos(2.9416), 3 sin(2.9416)) = (−2.9403, 0.5961).
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S

P 20 feet R

Figure 17.19: Where is
Cosmo after 3 minutes?

Example 17.5.3. Suppose Cosmo begins at the position R

in the figure, walking around the circle of radius 20 feet

with an angular speed of 4
5
RPM counterclockwise. After 3

minutes have elapsed, describe Cosmo’s precise location.

Solution. Cosmo has traveled 3 4
5
= 12

5
revolutions. If θ is

the angle traveled after 3 minutes, θ =
(

12
5
rev
) (

2π radians
rev

)

=
24π
5
radians = 15.08 radians. By (15.5.1), we have x =

20 cos
(

24π
5
rad

)

= −16.18 feet and y = 20 sin
(

24π
5
rad

)

=

11.76 feet. Conclude that Cosmo is located at the point
S = (−16.18, 11.76). Using (15.1), θ = 864◦ = 2(360◦) + 144◦;
this means that Cosmo walks counterclockwise around
the circle two complete revolutions, plus 144◦.

17.6 Other Basic Circular Function

Given any angle θ, our constructions offer a concrete link between the
cosine and sine functions and right triangles inscribed inside the unit
circle: See Figure 17.20.

P

P

PP

R

RRR θ

θ
θ

θ

O OOO

CASE I CASE II CASE III CASE IV

Figure 17.20: Computing the slope of a line using the function tan(θ).

The slope of the hypotenuse of these inscribed triangles is just the
slope of the line through OP. Since P = (cos(θ), sin(θ)) and O = (0, 0):

Slope =
∆y

∆x
=

sin(θ)

cos(θ)
;

this would be valid as long as cos(θ) 6= 0. This calculation motivates a
new circular function called the tangent of θ by the rule

tan(θ) =
sin(θ)

cos(θ)
, provided cos(θ) 6= 0.



232 CHAPTER 17. THE CIRCULAR FUNCTIONS

The only time cos(θ) = 0 is when the corresponding point P on the
unit circle has x-coordinate 0. But, this only happens at the positions
(0, 1) and (0,−1) on the unit circle, corresponding to angles of the form
θ = ±π

2
,±3π

2
,±5π

2
, · · · . These are the cases when the inscribed right tri-

angle would “degenerate” to having zero width and the line segment OP
becomes vertical. In summary, we then have this general idea to keep in
mind:

Important Fact 17.6.1. The slope of a line = tan(θ), where θ is the
angle the line makes with the x-axis (or any other horizontal line)

Three other commonly used circular functions come up from time to
time. The cotangent function y = cot(θ), the secant function y = sec(θ)
and the cosecant function y = csc(θ) are defined by the formulas:

sec(θ)
def
=

1

cos(θ)
, csc(θ)

def
=

1

sin(θ)
, cot(θ)

def
=

1

tan(θ)
.

Just as with the tangent function, one needs to worry about the values
of θ for which these functions are undefined (due to division by zero). We
will not need these functions in this text.

Alaska

West

South Delta

East

Northwest

North

1150

SeaTac

500

200

(a) The flight paths of three
airplanes.
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Alaska

x = −50

x = 30

y = 20

Delta

Q

P

R

(b) Modeling the paths of each
flight.

Figure 17.21: Visualizing
and modeling departing air-

planes.

Example 17.6.2. Three airplanes depart SeaTac Airport.

A NorthWest flight is heading in a direction 50◦ counter-

clockwise from East, an Alaska flight is heading 115◦ coun-

terclockwise from East and a Delta flight is heading 20◦

clockwise from East. Find the location of the Northwest

flight when it is 20 miles North of SeaTac. Find the loca-

tion of the Alaska flight when it is 50 miles West of SeaTac.

Find the location of the Delta flight when it is 30 miles East

of SeaTac.

Solution. We impose a coordinate system in Fig-
ure 17.21(a), where “East” (resp. “North”) points along the
positive x-axis (resp. positive y-axis). To solve the prob-
lem, we will find the equation of the three lines represent-
ing the flight paths, then determine where they intersect
the appropriate horizontal or vertical line. The Northwest
and Alaska directions of flight are angles in standard cen-
tral position; the Delta flight direction will be −20◦. We can
imagine right triangles with their hypotenuses along the
directions of flight, then using the tangent function, we
have these three immediate conclusions:

slope NW line = tan(50◦) = 1.19,

slope Alaska line = tan(115◦) = −2.14, and

slope Delta line = tan(−20◦) = −0.364.
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All three flight paths pass through the origin (0,0) of our coordinate
system, so the equations of the lines through the flight paths will be:

NW flight : y = 1.19x,

Alaska flight : y = −2.14x,

Delta flight : y = −0.364x.

The Northwest flight is 20 miles North of SeaTac when y = 20; plugging
into the equation of the line of flight gives 20 = 1.19x, so x = 16.81 and
the plane location will be P = (16.81, 20). Similarly, the Alaska flight is
50 miles West of SeaTac when x = −50; plugging into the equation of the
line of flight gives y = (−2.14)(−50) = 107 and the plane location will be
Q = (−50, 107). Finally, check that the Delta flight is at R = (30,−10.92)

when it is 30 miles East of SeaTac.
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17.7 Exercises

Problem 17.1. John has been hired to de-
sign an exciting carnival ride. Tiff, the car-
nival owner, has decided to create the world’s
greatest ferris wheel. Tiff isn’t into math; she
simply has a vision and has told John these
constraints on her dream: (i) the wheel should
rotate counterclockwise with an angular speed
of 12 RPM; (ii) the linear speed of a rider should
be 200 mph; (iii) the lowest point on the ride
should be 4 feet above the level ground. Recall,
we worked on this in Exercise 16.5.

P

4 feet

12 RPM

θ

(a) Impose a coordinate system and find the
coordinates T(t) = (x(t),y(t)) of Tiff at
time t seconds after she starts the ride.

(b) Tiff becomes a human missile after 6
seconds on the ride. Find Tiff’s coordi-
nates the instant she becomes a human
missile.

(c) Find the equation of the tangential line
along which Tiff travels the instant she
becomes a human missile. Sketch a pic-
ture indicating this line and her initial
direction of motion along it when the
seat detaches.

Problem 17.2. (a) Find the equation of a
line passing through the point (-1,2) and
making an angle of 13o with the x-axis.
(Note: There are two answers; find them
both.)

(b) Find the equation of a line making an
angle of 8o with the y-axis and passing
through the point (1,1). (Note: There are
two answers; find them both.)

Problem 17.3. The crew of a helicopter needs
to land temporarily in a forest and spot a flat
horizontal piece of ground (a clearing in the

forest) as a potential landing site, but are un-
certain whether it is wide enough. They make
two measurements from A (see picture) finding
α = 25o and β = 54o. They rise vertically 100
feet to B and measure γ = 47o. Determine the
width of the clearing to the nearest foot.

α
β

γ

B

A

C DE

100 feet

clearing

Problem 17.4. Marla is running clockwise
around a circular track. She runs at a con-
stant speed of 3 meters per second. She takes
46 seconds to complete one lap of the track.
From her starting point, it takes her 12 sec-
onds to reach the northermost point of the
track.

Impose a coordinate system with the cen-
ter of the track at the origin, and the northern-
most point on the positive y-axis.

(a) Give Marla’s coordinates at her starting
point.

(b) Give Marla’s coordinates when she has
been running for 10 seconds.

(c) Give Marla’s coordinates when she has
been running for 901.3 seconds.

Problem 17.5. A merry-go-round is rotating
at the constant angular speed of 3 RPM coun-
terclockwise. The platform of this ride is a cir-
cular disc of radius 24 feet. You jump onto the
ride at the location pictured below.

θ

rotating 3 RPM

jump on here
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(a) If θ = 34o, then what are your xy-
coordinates after 4 minutes?

(b) If θ = 20o, then what are your xy-
coordinates after 45 minutes?

(c) If θ = −14o, then what are your xy-
coordinates after 6 seconds? Draw an
accurate picture of the situation.

(d) If θ = −2.1 rad, then what are your
xy-coordinates after 2 hours and 7 sec-
onds? Draw an accurate picture of the
situation.

(e) If θ = 2.1 rad, then what are your xy-
coordinates after 5 seconds? Draw an
accurate picture of the situation.

Problem 17.6. Shirley is on a ferris wheel
which spins at the rate of 3.2 revolutions per
minute. The wheel has a radius of 45 feet, and
the center of the wheel is 59 feet above the
ground. After the wheel starts moving, Shirley
takes 16 seconds to reach the top of the wheel.

How high above the ground is she when
the wheel has been moving for 9 minutes?

Problem 17.7. The top of the Boulder Dam
has an angle of elevation of 1.2 radians from
a point on the Colorado River. Measuring the
angle of elevation to the top of the dam from
a point 155 feet farther down river is 0.9 radi-
ans; assume the two angle measurements are
taken at the same elevation above sea level.
How high is the dam?

dam

155 ft

0.9 1.2

a

downriver

Problem 17.8. A radio station obtains a per-
mit to increase the height of their radio tower
on Queen Anne Hill by no more than 100 feet.
You are the head of the Queen Anne Commu-
nity Group and one of your members asks you
to make sure that the radio station does not
exceed the limits of the permit. After finding a

relatively flat area nearby the tower (not nec-
essarily the same altitude as the bottom of the
tower), and standing some unknown distance
away from the tower, you make three mea-
surements all at the same height above sea
level. You observe that the top of the old tower
makes an angle of 39◦ above level. You move
110 feet away from the original measurement
and observe that the old top of the tower now
makes an angle of 34◦ above level. Finally, af-
ter the new construction is complete, you ob-
serve that the new top of the tower, from the
same point as the second measurement was
made, makes an angle of 40◦ above the hori-
zontal. All three measurements are made at
the same height above sea level and are in line
with the tower. Find the height of the addition
to the tower, to the nearest foot.

Problem 17.9. Charlie and Alexandra are
running around a circular track with radius
60 meters. Charlie started at the western-
most point of the track, and, at the same time,
Alexandra started at the northernmost point.
They both run counterclockwise. Alexandra
runs at 4 meters per second, and will take ex-
actly 2 minutes to catch up to Charlie.

Impose a coordinate system, and give the
x- and y-coordinates of Charlie after one
minute of running.

Problem 17.10. George and Paula are run-
ning around a circular track. George starts at
the westernmost point of the track, and Paula
starts at the easternmost point. The illustra-
tion below shows their starting positions and
running directions. They start running toward
each other at constant speeds. George runs at
9 feet per second. Paula takes 50 seconds to
run a lap of the track. George and Paula pass
each other after 11 seconds.

N

George Paula

After running for 3 minutes, how far east
of his starting point is George?



236 CHAPTER 17. THE CIRCULAR FUNCTIONS

Problem 17.11. A kite is attached to 300 feet
of string, which makes a 42 degree angle with
the level ground. The kite pilot is holding the
string 4 feet above the ground.

42
o

4 feet

kite

ground level

(a) How high above the ground is the kite?

(b) Suppose that power lines are located
250 feet in front of the kite flyer. Is
any portion of the kite or string over the
power lines?

Problem 17.12. In the pictures below, a bug
has landed on the rim of a jelly jar and is mov-
ing around the rim. The location where the
bug initially lands is described and its angu-
lar speed is given. Impose a coordinate sys-
tem with the origin at the center of the circle
of motion. In each of the cases, answer these
questions:

(a) Find an angle θ0 in standard central po-
sition that gives the bugs initial location.
(In some cases, this is the angle given in
the picture; in other cases, you will need
to do something.)

(b) The location angle of the bug at time t is
given by the formula θ(t) = θ0 +ωt. Plug
in the values for θ0 and ω to explicitly
obtain a formula for θ(t).

(c) Find the coordinates of the bug at time
t.

(d) What are the coordinates of the bug af-
ter 1 second? After 0 seconds? After 3
seconds? After 22 seconds?

here

bug lands here

ω=4π/9

2 in

1.2 rad

bug lands here

ω=4π/9rad/sec

2 in

0.5 rad

2 in

ω= 4π/9rad/sec

rad/sec

bug lands 


