
Chapter 19

Sinusoidal Functions
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Figure 19.1: The depth of a
salmon as a function of time.

A migrating salmon is heading up a portion of the
Columbia River. It’s depth d(t) (in feet) below the water
surface is measured and plotted over a 30 minute period,
as a function of time t (minutes). What is the formula for
d(t)?

In order to answer the question, we need to introduce
an important new family of functions called the sinusoidal
functions. These functions will play a central role in mod-
eling any kind of periodic phenomena. The amazing fact
is that almost any function you will encounter can be approximated by a
sum of sinusoidal functions; a result that has far-reaching implications
in all of our lives.

19.1 A special class of functions

Beginning with the trigonometric function y = sin(x), what is the most
general function we can build using the graphical techniques of shifting
and stretching?
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Figure 19.2: Visualizing the geometric operations available for curve sketching.

The graph of y = sin(x) can be manipulated in four basic ways: hori-
zontally shift, vertically shift, horizontally dilate or vertically dilate. Each
of these “geometric operations” corresponds to a simple change in the
“symbolic formula” for the function, as discussed in Chapter 13.
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252 CHAPTER 19. SINUSOIDAL FUNCTIONS

If we vertically shift the graph by D units upward, the resulting curve
would be the graph of the function y = sin(x)+D; see Facts 13.3.1. Recall,
the effect of the sign of D: If D is negative, the effect of shifting D units
upward is the same as shifting |D| units downward. Notice, the function
y = sin(x) + D is still a periodic function, having the same period 2π as
y = sin(x). Notice, whereas the graph of the function y = sin(x) oscillates
between the horizontal lines y = ±1, the graph of y = sin(x) +D oscillates
between y = D ± 1. For this reason, we sometimes refer to the constant
D as the mean of the function y = sin(x) +D. In Figure 19.3, notice that
the graph of y = sin(x)+D is symmetrically split by the horizontal “mean”
line y = D.

y-axis y-axis

y = sin(x)

x-axis x-axis

y = D
D

y = sin(x) + D

shift D units

Figure 19.3: Interpreting the mean.

Next, consider the effect of horizontally shifting the graph of y = sin(x)
by C units to the right. By Facts 13.3.1, the new curve is the graph of
the function y = sin(x − C). Also, recall the effect of the sign of C: If
C is negative, the effect of shifting C units right is the same as shifting
|C| units left. If the domain of sin(x) is 0 ≤ x ≤ 2π, then the domain of
sin(x − C) is 0 ≤ x − C ≤ 2π, again by Facts 13.3.1. Rewriting this, the
domain of sin(x − C) is C ≤ x ≤ 2π + C and the graph will go through
precisely one period on this domain. In other words, the new function
sin(x − C) is still 2π-periodic. The constant C is usually called the phase
shift of y = sin(x−C). Looking at Figure 19.4, it is possible to interpret C
graphically: C will be a point where the graph crosses the horizontal axis
on its way up from a minimum to a maximum.
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C

y = sin(x − C)

Figure 19.4: Interpreting the phase shift.

Vertically dilating the graph, either by vertical expansion or compres-
sion, leads to a new curve. The graph of this vertically dilated curve
is y = A sin(x), for some positive constant A. Furthermore, if A > 1,
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the graph of y = A sin(x) is a vertically expanded version of y = sin(x),
whereas, if 0 < A < 1, then the graph of y = A sin(x) is a vertically com-
pressed version of y = sin(x). Notice, the function y = A sin(x) is still 2π-
periodic. What has changed is the band of oscillation: whereas the graph
of the function y = sin(x) stays between the horizontal lines y = ±1, the
graph of y = A sin(x) oscillates between the horizontal lines y = ±A. We
usually refer to A as the amplitude of the function y = A sin(x).
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x-axis

x-axis

stretch A units
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Figure 19.5: Interpreting the amplitude.

Finally, horizontally dilating the graph, either by horizontal expansion
or compression, leads to a new curve. The equation of this horizontally
dilated curve is y = sin(cx), for some constant c > 0. We know that y =

sin(x) is a 2π-periodic function and observe that horizontally dilation still
results in a periodic function, but the period will typically NOT be 2π. For
future purposes, it is useful to rewrite the equation for the horizontally
stretched curve in a way more directly highlighting the period. To begin
with, once the horizontal stretching factor c is known, we could rewrite

c =
2π

B
, for some B 6= 0.

stretch  

y-axisy-axis

x-axis

x-axis

y = sin(x)
y = sin((2π

B
)x)

Figure 19.6: Interpreting the period.

Here is the point of this yoga with the horizontal dilating constant: If
we let the values of x range over the interval [0, B], then 2π

B
x will range over

the interval [0,2π]. In other words, the function y = sin
(

2π
B
x
)

is B-periodic
and we can read off the period of y = sin

(

2π
B
x
)

by viewing the constant
in this mysterious way. The four constructions outlined lead to a new
family of functions.



254 CHAPTER 19. SINUSOIDAL FUNCTIONS

Definition 19.1.1 (The Sinusoidal Function). Let A, B, C and D be fixed

constants, where A and B are both positive. Then we can form the new

function

y = A sin

(

2π

B
(x− C)

)

+D,

which is called a sinusoidal function. The four constants can be interpreted

graphically as indicated:

all four

operations

y-axis y-axis

x-axisx-axis

y = sin(x)

B
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y = A sin((2π
B

)(x − c)) + D

Figure 19.7: Putting it all together for the sinusoidal function.

19.1.1 How to roughly sketch a sinusoidal graph

Important Procedure 19.1.2. Given a sinusoidal function in the standard

form

y = A sin

(

2π

B
(x− C)

)

+D,

once the constants A, B, C, and D are specified, any graphing device can

produce an accurate graph. However, it is pretty straightforward to sketch

a rough graph by hand and the process will help reinforce the graphical

meaning of the constants A, B, C, and D. Here is a “five step procedure”

one can follow, assuming we are given A, B, C, and D. It is a good idea to

follow Example 19.1.3 as you read this procedure; that way it will seem a

lot less abstract.

1. Draw the horizontal line given by the equation y = D; this line will

“split” the graph of y = A sin
(

2π
B
(x− C)

)

+ D into symmetrical upper

and lower halves.

2. Draw the two horizontal lines given by the equations y = D±A. These
two lines determine a horizontal strip inside which the graph of the
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sinusoidal function will oscillate. Notice, the points where the sinu-

soidal function has a maximum value lie on the line y = D+ A. Like-

wise, the points where the sinusoidal function has a minimum value

lie on the line y = D−A. Of course, we do not yet have a prescription

that tells us where these maxima (peaks) and minima (valleys) are

located; that will come out of the next steps.

3. Since we are given the period B, we know these important facts: (1)

The period B is the horizontal distance between two successive max-

ima (peaks) in the graph. Likewise, the period B is the horizontal

distance between two successive minima (valleys) in the graph. (2)

The horizontal distance between a maxima (peak) and the successive

minima (valley) is 1
2
B.

4. Plot the point (C,D). This will be a place where the graph of the

sinusoidal function will cross the mean line y = D on its way up
from a minima to a maxima. This is not the only place where the

graph crosses the mean line; it will also cross at the points obtained

from (C,D) by horizontally shifting by any integer multiple of 1
2
B.

For example, here are three places the graph crosses the mean line:

(C,D), (C+ 1
2
B,D), (C+ B,D)

5. Finally, midway between (C,D) and (C+ 1
2
B,D) there will be a maxima

(peak); i.e. at the point (C + 1
4
B,D + A). Likewise, midway between

(C + 1
2
B,D) and (C + B,D) there will be a minima (valley); i.e. at the

point (C+ 3
4
B,D−A). It is now possible to roughly sketch the graph on

the domain C ≤ x ≤ C + B by connecting the points described. Once

this portion of the graph is known, the fact that the function is periodic

tells us to simply repeat the picture in the intervals C+B ≤ x ≤ C+2B,

C− B ≤ x ≤ C, etc.

To make sense of this procedure, let’s do an explicit example to see
how these five steps produce a rough sketch.
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Example 19.1.3. The temperature (in ◦C) of Adri-N’s dorm room varies

during the day according to the sinusoidal function d(t) = 6 sin
(

π
12
(t− 11)

)

+

19, where t represents hours after midnight. Roughly sketch the graph of

d(t) over a 24 hour period.. What is the temperature of the room at 2:00

pm? What is the maximum and minimum temperature of the room?

Solution. We begin with the rough sketch. Start by taking an inventory
of the constants in this sinusoidal function:

d(t) = 6 sin
( π

12
(t− 11)

)

+ 19 = A sin

(

2π

B
(t− C)

)

+D.

Conclude that A = 6, B = 24, C = 11, D = 19. Following the first four
steps of the procedure outlined, we can sketch the lines y = D = 19,
y = D ± A = 19 ± 6 and three points where the graph crosses the mean
line (see Figure19.8).
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Figure 19.8: Sketching the mean D and amplitude A.

According to the fifth step in the sketching procedure, we can plot the
maxima (C+ 1

4
B,D+A) = (17, 25) and the minima (C+ 3

4
B,D−A) = (29, 13).

We then “connect the dots” to get a rough sketch on the domain 11 ≤ t ≤
35.
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Figure 19.9: Visualizing the maximum and minimum over one period.
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Finally, we can use the fact the function has period 24 to sketch the
graph to the right and left by simply repeating the picture every 24 hori-
zontal units.
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Figure 19.10: Repeat sketch for every full period.

We restrict the picture to the domain 0 ≤ t ≤ 24 and obtain the com-
puter generated graph pictured in Figure 19.11; as you can see, our
rough graph is very accurate. The temperature at 2:00 p.m. is just
d(14) = 23.24◦C. From the graph, the maximum value of the function will
be D+A = 25◦C and the minimum value will be D−A = 13◦C.
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Figure 19.11: The computer generated solution.

19.1.2 Functions not in standard sinusoidal form

Any time we are given a trigonometric function written in the standard
form

y = A sin

(

2π

B
(x− C)

)

+D,

for constants A, B, C, and D (with A and B positive), the summary in
Definition 19.1.1 tells us everything we could possibly want to know
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about the graph. But, there are two ways in which we might encounter a
trigonometric type function that is not in this standard form:

• The constants A or Bmight be negative. For example, y = −2 sin(2x−
7) − 3 and y = 3 sin

(

−1
2
x+ 1

)

+ 4 are examples that fail to be in
standard form.

• We might use the cosine function in place of the sine function. For
example, something like y = 2 cos(3x + 1) − 2 fails to be in standard
sinusoidal form.

Now what do we do? Does this mean we need to repeat the analysis that
led to Definition 19.1.1? It turns out that if we use our trig identities
just right, then we can move any such equation into standard form and
read off the amplitude, period, phase shift and mean. In other words,
equations that fail to be in standard sinusoidal form for either of these
two reasons will still define sinusoidal functions. We illustrate how this
is done by way of some examples:

Examples 19.1.4.

(i) Start with y = −2 sin(2x−7)−3, then here are the steps with reference

to the required identities to put the equation in standard form:

y = −2 sin(2x− 7) − 3

= 2 (− sin(2x− 7)) − 3

= 2 sin(2x− 7+ π) + (−3) Fact 18.2.5 on page 241

= 2 sin

(

2π

π

(

x −

[

7− π

2

]))

+ (−3).

This function is now in the standard form of Definition 19.1.1, so it is

a sinusoidal function with phase shift C = 7−π
2

= 1.93, mean D = −3,

amplitude A = 2 and period B = π.

(ii) Start with y = 3 sin(−1
2
x+1)+4, then here are the steps with reference

to the required identities to put the equation in standard form:

y = 3 sin

(

−
1

2
x+ 1

)

+ 4

= 3 sin

(

−

(

1

2
x− 1

))

+ 4

= 3

(

− sin

(

1

2
x− 1

))

+ 4 Fact 18.2.4 on page 241

= 3 sin

(

1

2
x − 1+ π

)

+ 4 Fact 18.2.5 on page 241

= 3 sin

(

2π

4π
(x− [2− 2π])

)

+ 4
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This function is now in the standard form of Definition 19.1.1, so it

is a sinusoidal function with phase shift C = 2 − 2π, mean D = 4,

amplitude A = 3 and period B = 4π.

(iii) Start with y = 2 cos(3x+1)−2, then here are the steps to put the equa-

tion in standard form. A key simplifying step is to use the identity:

cos(t) = sin(π
2
+ t).

y = 2 cos(3x+ 1) − 2

= 2 sin
(π

2
+ 3x + 1

)

− 2

= 2 sin
(

3x −
[

−1−
π

2

])

+ (−2)

= 2 sin

(

2π
(

2π
3

)

(

x −
1

3

[

−1−
π

2

]

)

)

+ (−2)

This function is now in the standard form of Definition 19.1.1, so it is

a sinusoidal function with phase shift C = 1
3
[−1 − π

2
], mean D = −2,

amplitude A = 2 and period B = 2π
3
.

19.2 Examples of sinusoidal behavior

Problems involving sinusoidal behavior come in two basic flavors. On the
one hand, we could be handed an explicit sinusoidal function

y = A sin

(

2π

B
(x− C)

)

+D

and asked various questions. The answers typically require either direct
calculation or interpretation of the constants. Example 19.1.3 is typical
of this kind of problem. On the other hand, we might be told a particular
situation is described by a sinusoidal function and provided some data
or a graph. In order to further analyze the problem, we need a “formula”,
which means finding the constants A, B, C, and D. This is a typical
scenario in a “mathematical modeling problem”: the process of observing
data, THEN obtaining a mathematical formula. To find A, take half the
difference between the largest and smallest values of f(x). The period B
is most easily found by measuring the distance between two successive
maxima (peaks) or minima (valleys) in the graph. The mean D is the
average of the largest and smallest values of f(x). The phase shift C
(which is usually the most tricky quantity to get your hands on) is found
by locating a “reference point”. This “reference point” is a location where
the graph crosses the mean line y = D on its way up from a minimum
to a maximum. The funny thing is that the phase shift C is NOT unique;
there are an infinite number of correct choices. One choice that will work
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is C = (x-coordinate of a maximum) − B
4
. Any other choice of C will differ

from this one by a multiple of the period B.

A =
max value −min value

2
B = distance between two successive peaks (or valleys)

C = x-coordinate of a maximum−
B

4

D =
max value +min value

2
.

Example 19.2.1. Assume that the number of hours of daylight in Seattle

is given by a sinusoidal function d(t) of time. During 1994, assume the

longest day of the year is June 21 with 15.7 hours of daylight and the

shortest day is December 21 with 8.3 hours of daylight. Find a formula

d(t) for the number of hours of daylight on the tth day of the year.
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Figure 19.12: Hours of day-
light in Seattle in 1994.

Solution. Because the function d(t) is assumed to be si-
nusoidal, it has the form y = A sin

(

2π
B
(t− C)

)

+D, for con-
stants A, B, C, and D. We simply need to use the given
information to find these constants. The largest value of
the function is 15.7 and the smallest value is 8.3. Know-
ing this, from the above discussion we can read off :

D =
15.7+ 8.3

2
= 12 A =

15.7− 8.3

2
= 3.7.

To find the period, we need to compute the time between two successive
maximum values of d(t). To find this, we can simply double the time
length of one-half period, which would be the length of time between
successive maximum and minimum values of d(t). This gives us the
equation

B = 2(days between June 21 and December 21) = 2(183) = 366.

Locating the final constant C requires the most thought. Recall, the
longest day of the year is June 21, which is day 172 of the year, so

C = (day with max daylight) −
B

4
= 172−

366

4
= 80.5.

In summary, this shows that

d(t) = 3.7 sin

(

2π

366
(t− 80.5)

)

+ 12.

A rough sketch, following the procedure outlined above, gives this graph
on the domain 0 ≤ t ≤ 366; we have included the mean line y = 12 for
reference.
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We close with the example that started this section.

Example 19.2.2. The depth of a migrating salmon below the water sur-

face changes according to a sinusoidal function of time. The fish varies

between 1 and 5 feet below the surface of the water. It takes the fish

1.571 minutes to move from its minimum depth to its successive maximum

depth. It is located at a maximum depth when t = 4.285 minutes. What

is the formula for the function d(t) that predicts the depth of the fish after

t minutes? What was the depth of the salmon when it was first spotted?

During the first 10 minutes, how many times will the salmon be exactly 4

feet below the surface of the water?
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Figure 19.13: Depth of a mi-
grating salmon.

Solution. We know that d(t) = A sin( 2π
B
(x− C)) +D, for ap-

propriate constants A, B, C, and D. We need to use the
given information to extract these four constants. The
amplitude and mean are easily found using the above for-
mulas:

A =
max depth −min depth

2
=
5− 1

2
= 2

D =
max depth +min depth

2
=
5+ 1

2
= 3.

The period can be found by noting that the information about the time
between a successive minimum and maximum depth will be half of a
period (look at the picture in Figure 19.13):

B = 2(1.571) = 3.142

Finally, to find C we

C = (time of maximum depth)−
B

4
= 4.285−

3.142

4
= 3.50.

The formula is now

d(t) = 2 sin

(

2π

3.142
(t− 3.5)

)

+ 3 = 2 sin(2t− 7) + 3

The depth of the salmon when it was first spotted is just

d(0) = 2 sin(−7) + 3 = 1.686 feet.

Finally, graphically, the last question amounts to determining how many
times the graph of d(t) crosses the line y = 4 on the domain [0,10].
This can be done using Figure 19.13. A simultaneous picture of the
two graphs is given, from which we can see the salmon is exactly 4 feet
below the surface of the water six times during the first 10 minutes.



262 CHAPTER 19. SINUSOIDAL FUNCTIONS

19.3 Summary

• A sinusoidal function is one of the form

f(t) = A sin

(

2π

B
(t− C)

)

+D

where A, B, C, and D are constants.

– A is the amplitude of the function; this is half the vertical dis-
tance between a high point and a low point on its graph.

– B is the period of the function; this is the horizontal distance be-
tween two consecutive high points (or low points) on its graph.

– C is the phase shift of the function; it is multi-valued, but one
choice for C is a value of t at which the function is increasing
and equal to D.

– D is the mean value of the function; it is the y-value of the hor-
izontal line about which the graph of the function is balanced.

• The graph of a sinusoidal function is a shifted, scaled version of the
graph of y = sin t.
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19.4 Exercises

Problem 19.1. Find the amplitude, period, a
phase shift and the mean of the following si-
nusoidal functions.

(a) y = sin(2x− π) + 1

(b) y = 6 sin(πx) − 1

(c) y = 3 sin(x+ 2.7) + 5.2

(d) y = 5.6
(

sin
(

2
3
x− 7

)

− 12.1
)

(e) y = 2.1 sin
(

x
π
+ 44.3

)

− 9.8

(f) y = 3.9 (sin(22.34(x + 18)) − 11)

(g) y = 11.2 sin
(

5
π
(x − 9.2)

)

+ 8.3

Problem 19.2. A weight is attached to a spring
suspended from a beam. At time t = 0, it
is pulled down to a point 10 cm above the
ground and released. After that, it bounces up
and down between its minimum height of 10
cm and a maximum height of 26 cm, and its
height h(t) is a sinusoidal function of time t.
It first reaches a maximum height 0.6 seconds
after starting.

(a) Follow the procedure outlined in this
section to sketch a rough graph of h(t).
Draw at least two complete cycles of the
oscillation, indicating where the maxima
and minima occur.

(b) What are the mean, amplitude, phase
shift and period for this function?

(c) Give four different possible values for
the phase shift.

(d) Write down a formula for the function
h(t) in standard sinusoidal form; i.e. as
in 19.1.1 on Page 254.

(e) What is the height of the weight after
0.18 seconds?

(f) During the first 10 seconds, how many
times will the weight be exactly 22 cm
above the floor? (Note: This problem
does not require inverse trigonometry.)

Problem 19.3. A respiratory ailment called
“Cheyne-Stokes Respiration” causes the vol-
ume per breath to increase and decrease in a
sinusoidal manner, as a function of time. For
one particular patient with this condition, a

machine begins recording a plot of volume per
breath versus time (in seconds). Let b(t) be a
function of time t that tells us the volume (in
liters) of a breath that starts at time t. Dur-
ing the test, the smallest volume per breath
is 0.6 liters and this first occurs for a breath
that starts 5 seconds into the test. The largest
volume per breath is 1.8 liters and this first
occurs for a breath beginning 55 seconds into
the test.

(a) Find a formula for the function b(t)

whose graph will model the test data for
this patient.

(b) If the patient begins a breath every 5
seconds, what are the breath volumes
during the first minute of the test?

Problem 19.4. Suppose the high tide in Seat-
tle occurs at 1:00a.m. and 1:00p.m. at which
time the water is 10 feet above the height of
low tide. Low tides occur 6 hours after high
tides. Suppose there are two high tides and
two low tides every day and the height of the
tide varies sinusoidally.

(a) Find a formula for the function y = h(t)

that computes the height of the tide
above low tide at time t. (In other words,
y = 0 corresponds to low tide.)

(b) What is the tide height at 11:00a.m.?

Problem 19.5. Your seat on a Ferris Wheel is
at the indicated position at time t = 0.

53 feet
Start

Let t be the number of seconds elapsed after
the wheel begins rotating counterclockwise.
You find it takes 3 seconds to reach the top,
which is 53 feet above the ground. The wheel
is rotating 12 RPM and the diameter of the
wheel is 50 feet. Let d(t) be your height above
the ground at time t.



264 CHAPTER 19. SINUSOIDAL FUNCTIONS

(a) Argue that d(t) is a sinusoidal function,
describing the amplitude, phase shift,
period and mean.

(b) When are the first and second times you
are exactly 28 feet above the ground?

(c) After 29 seconds, how many times will
you have been exactly 28 feet above the
ground?

Problem 19.6. In Exercise 17.12, we studied
the situation below: A bug has landed on the
rim of a jelly jar and is moving around the rim.
The location where the bug initially lands is
described and its angular speed is given. Im-
pose a coordinate system with the origin at the
center of the circle of motion. In each of the
cases, the earlier exercise found the coordi-
nates P(t) of the bug at time t. For each of the
scenarios below, answer these two questions:

(a) Both coordinates of P(t) = (x(t),y(t)) are
sinusoidal functions in the variable t.
Sketch a rough graph of the functions
x(t) and y(t) on the domain 0 ≤ t ≤ 9.

(b) Use the graph sketches to help you find
the the amplitude, mean, period and
phase shift for each function. Write x(t)
and y(t) in standard sinusoidal form.
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Problem 19.7. The voltage output(in volts) of
an electrical circuit at time t seconds is given
by the function

V(t) = 23 sin(5πt−3π)+1.

(a) What is the initial voltage output of the
circuit?

(b) Is the voltage output of the circuit ever
equal to zero? Explain.

(c) The function V(t) = 2p(t), where p(t) =

3 sin(5πt − 3π) + 1. Put the sinusoidal
function p(t) in standard form and
sketch the graph for 0 ≤ t ≤ 1. Label the
coordinates of the extrema on the graph.

(d) Calculate the maximum and minimum
voltage output of the circuit.

(e) During the first second, determine when
the voltage output of the circuit is 10
volts.
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(f) A picture of the graph of y = V(t) on the
domain 0 ≤ t ≤ 1 is given; label the coor-
dinates of the extrema on the graph.
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(g) Restrict the function V(t) to the domain
0.1 ≤ t ≤ 0.3; explain why this function
has an inverse and find the formula for
the inverse rule. Restrict the function
V(t) to the domain 0.3 ≤ t ≤ 0.5; ex-
plain why this function has an inverse
and find the formula for the inverse rule.

Problem 19.8. A six foot long rod is attached
at one end A to a point on a wheel of radius 2
feet, centered at the origin. The other end B is

free to move back and forth along the x-axis.
The point A is at (2,0) at time t = 0, and the
wheel rotates counterclockwise at 3 rev/sec.
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(a) As the point A makes one complete rev-
olution, indicate in the picture the direc-
tion and range of motion of the point B.

(b) Find the coordinates of the point A as a
function of time t.

(c) Find the coordinates of the point B as a
function of time t.

(d) What is the x-coordinate of the point B
when t = 1? You should be able to find
this two ways: with your function from
part (c), and using some common sense
(where is point A after one second?).

(e) Is the function you found in (c) a sinu-
soidal function? Explain.
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