- **1.** Distinguish between a qualitative observation and a quantitative observation. Give two examples of each.
- **2.** Distinguish among the terms element, compound, atom and molecule. Give an example of an element that is a molecule and an example of an element that is an atom.
- **3.** Indicate whether each of the following represents a mixture of atoms, a mixture of molecules, or a mixture of atoms and molecules. Is each a mixture of elements, compounds, or elements and compounds?

4. Indicate whether each of the following represents a mixture of atoms, a mixture of molecules, or a mixture of atoms and molecules. Is each a mixture of elements, compounds, or elements and compounds?

≫ •• ►		• • 8	
(a)	(b)	(c)	(d)

5. Classify each of the following as an element or compound: **a)** P₄ b) Fe c) C_3H_6O **d)** SO₂ e) O_3 6. Classify each of the following as an element or compound: a) H₂O **b)** C₆₀ c) Au **d)** CO e) N₂ 7. Classify each of the following as an atom or a molecule: **a)** P₄ b) Fe c) C_3H_6O **d)** SO₂ e) O_3 8. Classify each of the following as an atom or a molecule: **b)** C₆₀ c) Au **d)** CO **e)** N₂ **a)** H₂O 9. Classify each of the following as an atom, molecule, anion, or cation: **c)** N³⁻ **b)** NH_4^{1+} a) NH₃ d) CH₃COO¹⁻ e) Si 10. Classify each of the following as an atom, molecule, anion, or cation: **d)** Cl¹⁻ e) Al³⁺ **a)** Na¹⁺ **b)** NO_3^{1-} c) Na **11.** Give the name of each of the following elements: a) Na **b)** Br c) Hg **d)** Fe e) Ag

12. Give the name of each of the following elements:

a) Pb b) Au	c) F	d) Ca	e) P
---------------------------	-------------	--------------	-------------

- 13. Write the symbol for each of the following elements:a) copperb) leadc) strontiumd) silicone) tin
- 14. Write the symbol for each of the following elements:a) potassium b) ironc) nickeld) cadmiume) selenium
- 15. Determine the number of moles of atoms that are present in each of the following samples:

a) 5.0 g K b) 17 g Mg c) 3.0 g C d) 2.2 kg Fe e) 14 mg Ag

- 16. How many moles are in a 5.0-g sample of each of the following elements? How many moles of atoms are in each sample?
 a) Ca b) F₂ c) O₂ d) S₈ e) P₄.
- 17. How many moles of molecules are in a 10.0-g sample of each of the following compounds? How many moles of atoms are in each sample?
 a) SF₆ b) CCl₄ c) C₆H₁₄ d) SO₃ e) BF₃
- **18.** Determine the number of moles of carbon that are present in each of the following samples:
 - **a)** 1.0 g of aspirin, $C_9H_8O_4$ **b)** 3.0 g of ibuprofen, $C_{13}H_{18}O_2$
 - c) 12 mg of acetaminophen (Tylenol), $C_8H_9NO_2$
- **19.** Determine the mass of the following samples:**a)** 2.5 mol CaCl₂**b)** 0.75 mol C_6H_{12} **c)** 1.8 mol CO₂
- **20.** Determine the mass of the following samples: **a)** $4.6 \times 10^{-3} \text{ mol Al}(\text{NO}_3)_3$ **b)** $3.6 \text{ mol } \text{C}_{12}\text{H}_{22}\text{O}_{11}$ **c)** $220 \text{ mol } \text{H}_2$
- **21.** Consider a 5.00 g sample of Ca_2S_3 .
 - **a)** How many moles of Ca_2S_3 does it contain?
 - **b)** How many moles of sulfur does it contain?
 - c) How many grams of sulfur does it contain?
- **22.** A sample of Al(NO₃)₃ contains 0.90 moles of nitrogen.
 - **a)** How many moles of $Al(NO_3)_3$ are present in the sample?
 - **b)** What is the mass of the sample in grams?
 - c) How many moles of oxygen are in the sample?
 - d) How many aluminum atoms are in the sample?
 - e) How many grams of aluminum are in the sample?

23. Balance the following equations using the smallest integer coefficients:

a) $N_2 + H_2 \rightarrow NH_3$	d) $CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$
b) $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$	e) $P_4O_{10} + H_2O \rightarrow H_3PO_4$
c) $Al + O_2 \rightarrow Al_2O_3$	f) $Ca + O_2 \rightarrow CaO$

24. Balance the following equations using the smallest integer coefficients:

a) $P_4 + H_2 \rightarrow PH_3$	b) $H_3PO_4 + KOH \rightarrow K_3PO_4 + H_2O$
b) $Cl_2 + O_2 \rightarrow Cl_2O_7$	e) $N_2O_5 + H_2O \rightarrow HNO_3$
c) $Al + S_8 \rightarrow Al_2S_3$	f) $Al + H_2O \rightarrow Al(OH)_3 + H_2$

- **25.** Consider the reaction of 0.30 mol K with O_2 , $4K + O_2 \rightarrow 2K_2O$
 - a) How many moles of molecular oxygen are required?
 - **b)** How many moles of potassium oxide would form?
 - c) What mass, in grams, of potassium oxide would form?
- **26.** Consider the reaction of 6.5 g of iron with O_2 , $4Fe + 3O_2 \rightarrow 2Fe_2O_3$
 - a) How many moles of iron react?
 - **b)** How many moles of oxygen must react?
 - **c)** How many moles of Fe_2O_3 are formed?
 - **d)** What is the mass, in grams, of the Fe_2O_3 ?
- **27.** The green molecules (G_2) react with the yellow molecules (B_2) to form G_3B as shown to the right. Each circle represents one mole of the atoms. Atomic masses: G = 10 and B = 30.
 - **a)** How many grams of G_2 and B_2 are in the container?
 - **b)** How many G₃B molecules can be produced?
 - c) What is the balanced chemical equation for the reaction?
 - **d)** How many grams of G_3B would be produced?
 - **e)** What mass of G_2 or B_2 molecules would be left over?
- **28.** The yellow molecules (Y_3) react with the blue molecules (B_2) to form Y_2B as shown to the right. Each circle represents one mole of the atoms. Atomic masses: Y = 20 and B = 25.
 - **a)** How many grams of Y_3 and B_2 are in the container?
 - **b)** How many Y_2B molecules can be produced?
 - c) What is the balanced chemical equation for the reaction?
 - **d)** How many grams of Y_2B would be produced?
 - e) What mass of Y_3 or B_2 molecules would be left over?
- **29.** Consider the reaction of 6 mol Fe and 6 mol O_2 to produce Fe_3O_4 .
 - **a)** Write the balanced chemical equation.

- c) How many moles of excess reactant remain after the reaction is done?
- **30.** Consider the reaction of 3 mol P_4 and 10 mol O_2 to produce P_2O_5 .
 - a) Write the balanced chemical equation.
 - **b)** How many moles of P_2O_5 could be produced?
 - c) How many moles of excess reactant remain after the reaction is done?
- **31.** Use Coulomb's law to explain why Na¹⁺ ions and Cl¹⁻ ions exist as separated ions in liquid water ($\epsilon = 79$) but form ion pairs (NaCl units) in liquid carbon tetrachloride ($\epsilon = 2$).
- **32.** Explain what happens to the energy of an electron and a proton as the distance between them decreases. Explain how the energy of two protons changes as the distance between them decreases.
- **33.** What is the charge in coulombs of a mole of electrons?
- **34.** List the following systems of charged particles from most negative to most positive energies of interaction. Also list the forces from most attractive to most repulsive.
 - a) +2 and -3 charges separated by 10 nm
 - b) -2 and -1 charges separated by 8 nm
 - **c)** -2 and +2 charges separated by 8 nm
- **35.** List the following systems of charged particles from most negative to most positive energies of interaction. Also list the forces from most attractive to most repulsive.
 - **a)** +2 and +2 charges separated by 10 nm
 - **b)** -2 and +3 charges separated by 11 nm
 - c) +2 and +1 charges separated by 6 nm
- 36. Consider Thomson's experiments with cathode rays.
 - a) What conclusion was drawn because the "rays" were deflected by electric and magnetic fields?
 - **b)** What information about the rays was deduced from the fact that the "rays" moved toward the positive plate of the electric field?
 - c) What two factors dictated the extent of deflection of the rays?
- **37.** Why didn't the oil droplets in Millikan's experiment all have the same charge? What did the charges all have in common?

 \bigcirc

88

- **38.** What conclusions did Rutherford draw from the following observations?
 - a) Most α -particles passed through the foil with little or no deflection.
 - **b)** Some α -particles were deflected at very sharp angles.
 - c) The fraction of α -particles that was deflected at sharp angles was very small.
- **39.** The deflection of an X^{1+} ion in an electric field is 14% of that of an α -particle. What is the identity of X? An α -particle is ${}^{4}\text{He}^{2+}$.
- **40.** The paths of two particles, A and B, which pass between the plates of an electric field designated by '+' and '-', are shown below. One is a cation with a +1 charge, and the other is an anion with a -1 charge. The line in the center represents the path of an uncharged particle.

- a) Identify each particle as an anion or a cation.
- **b)** What is the approximate ratio of the masses of the two particles? Express your answer as the ratio (mass of B)/(mass of A).
- **41.** Use Figure 1.7 and the periodic law to determine the formulas of the oxides of the following elements:
 - a) phosphorus b) arsenic c) selenium
 - d) carbon e) cesium
- **42.** Use Figure 1.6 and the periodic nature of the elements to predict which element in each pair has the higher boiling point.
 - a) Rb or Ca b) Si or Sn c) C or Pb d) Cs or Xe e) He or Xe
- **43.** Use periodic behavior and the given chemical formulas to predict the formulas of the compound formed between the following elements:
 - a) Pb and Cl, given the formulas TlCl and BiCl₃
 - **b)** Sc and Br, given the formulas KBr and $CaBr_2$
- **44.** Use periodic behavior and the given chemical formulas to predict the formulas of the compound formed between the following elements:
 - a) Al and S, given the formulas Na₂S and MgS
 - **b)** Na and N, given the formulas NaF and Na₂O

- 45. Determine the number of protons, neutrons and electrons in a) ${}^{16}O^{2-}$ b) ${}^{27}Al^{3+}$ c) ${}^{25}Mg$ d) ${}^{19}F$ e) ${}^{48}Ti^{4+}$
- 46. Determine the number of protons, neutrons and electrons in a) ${}^{75}As^{5+}$ b) ${}^{31}P^{3-}$ c) ${}^{195}Pt$ d) ${}^{235}U$ e) ${}^{207}Pb^{2+}$
- **47.** Write the symbol for the species with the number of protons and electrons shown below.
 - a) 34 protons and 36 electrons
 - b) 26 protons and 23 electrons
 - c) 47 protons and 47 electrons
- **48.** Write the symbol for the species with the number of protons and electrons shown below.
 - a) 30 protons and 28 electrons
 - b) 81 protons and 78 electrons
 - c) 7 protons and 10 electrons
- **49.** Distinguish between a group and a period. How are the properties of the elements in each related?
- 50. Identify each of the following elements:
 - a) the alkali metal in the same period as bromine
 - **b)** the lightest alkaline earth metal
 - c) the noble gas in the same period as silicon
 - **d)** the transition metal in the same family as iron and the same period as antimony
- **51.** Identify each of the following elements:
 - a) the metalloid in the same family as gallium
 - **b)** the nonmetal in the same family as germanium
 - c) the only gas in the fifth period
 - d) the halogen in the same period as lead
 - e) the only metal in the same group as sulfur
- **52.** Group the following elements in pairs that are likely to have similar chemical properties: Li, N, F, P, K, and Br.
- **53.** Group the following elements in pairs that are likely to have similar chemical properties: Ca, S, Sr, He, O, Ar.