1. Distinguish between a qualitative observation and a quantitative observation. Give two examples of each.
2. Distinguish among the terms element, compound, atom and molecule. Give an example of an element that is a molecule and an example of an element that is an atom.
3. Indicate whether each of the following represents a mixture of atoms, a mixture of molecules, or a mixture of atoms and molecules. Is each a mixture of elements, compounds, or elements and compounds?

0	0	
0	0	
0	0	

(a)

(b)

(c)

(d)
4. Indicate whether each of the following represents a mixture of atoms, a mixture of molecules, or a mixture of atoms and molecules. Is each a mixture of elements, compounds, or elements and compounds?

(a)

(b)
(c)

8	0
8	0

(d)
5. Classify each of the following as an element or compound:
a) P_{4}
b) Fe
c) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
d) SO_{2}
e) O_{3}
6. Classify each of the following as an element or compound:
a) $\mathrm{H}_{2} \mathrm{O}$
b) C_{60}
c) Au
d) CO
e) N_{2}
7. Classify each of the following as an atom or a molecule:
a) P_{4}
b) Fe
c) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
d) SO_{2}
e) O_{3}
8. Classify each of the following as an atom or a molecule:
a) $\mathrm{H}_{2} \mathrm{O}$
b) C_{60}
c) Au
d) CO
e) N_{2}
9. Classify each of the following as an atom, molecule, anion, or cation:
a) NH_{3}
b) $\mathrm{NH}_{4}{ }^{1+}$
c) N^{3-}
d) $\mathrm{CH}_{3} \mathrm{COO}^{1-}$ e) Si
10. Classify each of the following as an atom, molecule, anion, or cation:
a) Na^{1+}
b) $\mathrm{NO}_{3}{ }^{1-}$
c) Na
d) Cl^{1-}
e) Al^{3+}
11. Give the name of each of the following elements:
a) Na
b) Br
c) Hg
d) Fe
e) Ag
12. Give the name of each of the following elements:
a) Pb
b) Au
c) F
d) Ca
e) P
13. Write the symbol for each of the following elements:
a) copper
b) lead
c) strontium
d) silicon
e) tin
14. Write the symbol for each of the following elements:
a) potassium
b) iron
c) nickel
d) cadmium e) selenium
15. Determine the number of moles of atoms that are present in each of the following samples:
a) 5.0 g K
b) 17 g Mg
c) 3.0 g C
d) 2.2 kg Fe e) 14 mg Ag
16. How many moles are in a $5.0-\mathrm{g}$ sample of each of the following elements? How many moles of atoms are in each sample?
a) Ca
b) F_{2}
c) O_{2}
d) S_{8}
e) P_{4}.
17. How many moles of molecules are in a $10.0-\mathrm{g}$ sample of each of the following compounds? How many moles of atoms are in each sample?
a) SF_{6}
b) CCl_{4}
c) $\mathrm{C}_{6} \mathrm{H}_{14}$
d) SO_{3}
e) BF_{3}
18. Determine the number of moles of carbon that are present in each of the following samples:
a) 1.0 g of aspirin, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
b) 3.0 g of ibuprofen, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$
c) 12 mg of acetaminophen (Tylenol), $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
19. Determine the mass of the following samples:
a) $2.5 \mathrm{~mol} \mathrm{CaCl}_{2}$
b) $0.75 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12}$
c) $1.8 \mathrm{~mol} \mathrm{CO}_{2}$
20. Determine the mass of the following samples:
a) $4.6 \times 10^{-3} \mathrm{~mol} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$
b) $3.6 \mathrm{~mol} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
c) $220 \mathrm{~mol} \mathrm{H}_{2}$
21. Consider a 5.00 g sample of $\mathrm{Ca}_{2} \mathrm{~S}_{3}$.
a) How many moles of $\mathrm{Ca}_{2} \mathrm{~S}_{3}$ does it contain?
b) How many moles of sulfur does it contain?
c) How many grams of sulfur does it contain?
22. A sample of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ contains 0.90 moles of nitrogen.
a) How many moles of $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ are present in the sample?
b) What is the mass of the sample in grams?
c) How many moles of oxygen are in the sample?
d) How many aluminum atoms are in the sample?
e) How many grams of aluminum are in the sample?
23. Balance the following equations using the smallest integer coefficients:
a) $\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}$
b) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
c) $\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}$
d) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}$
e) $\mathrm{P}_{4} \mathrm{O}_{10}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$
f) $\mathrm{Ca}+\mathrm{O}_{2} \rightarrow \mathrm{CaO}$
24. Balance the following equations using the smallest integer coefficients:
a) $\mathrm{P}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{PH}_{3}$
b) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{KOH} \rightarrow \mathrm{K}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$
b) $\mathrm{Cl}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Cl}_{2} \mathrm{O}_{7}$
c) $\mathrm{Al}+\mathrm{S}_{8} \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}$
e) $\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}$
f) $\mathrm{Al}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{H}_{2}$
25. Consider the reaction of 0.30 mol K with $\mathrm{O}_{2}, 4 \mathrm{~K}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}$
a) How many moles of molecular oxygen are required?
b) How many moles of potassium oxide would form?
c) What mass, in grams, of potassium oxide would form?
26. Consider the reaction of 6.5 g of iron with $\mathrm{O}_{2}, 4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
a) How many moles of iron react?
b) How many moles of oxygen must react?
c) How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are formed?
d) What is the mass, in grams, of the $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
27. The green molecules $\left(G_{2}\right)$ react with the yellow molecules $\left(B_{2}\right)$ to form $G_{3} B$ as shown to the right. Each circle represents one mole of the atoms. Atomic masses: $\mathrm{G}=10$ and $\mathrm{B}=30$.

a) How many grams of G_{2} and B_{2} are in the container?
b) How many $\mathrm{G}_{3} \mathrm{~B}$ molecules can be produced?
c) What is the balanced chemical equation for the reaction?
d) How many grams of $\mathrm{G}_{3} \mathrm{~B}$ would be produced?
e) What mass of G_{2} or B_{2} molecules would be left over?
28. The yellow molecules $\left(\mathrm{Y}_{3}\right)$ react with the blue molecules $\left(\mathrm{B}_{2}\right)$ to form $\mathrm{Y}_{2} \mathrm{~B}$ as shown to the right. Each circle represents one mole of the atoms. Atomic masses: $\mathrm{Y}=20$ and $\mathrm{B}=25$.

a) How many grams of Y_{3} and B_{2} are in the container?
b) How many $\mathrm{Y}_{2} \mathrm{~B}$ molecules can be produced?
c) What is the balanced chemical equation for the reaction?
d) How many grams of $\mathrm{Y}_{2} \mathrm{~B}$ would be produced?
e) What mass of Y_{3} or B_{2} molecules would be left over?
29. Consider the reaction of 6 mol Fe and $6 \mathrm{~mol} \mathrm{O}_{2}$ to produce $\mathrm{Fe}_{3} \mathrm{O}_{4}$.
a) Write the balanced chemical equation.
b) How many moles of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ could be produced?
c) How many moles of excess reactant remain after the reaction is done?
30. Consider the reaction of $3 \mathrm{~mol}_{4}$ and $10 \mathrm{~mol}_{2}$ to produce $\mathrm{P}_{2} \mathrm{O}_{5}$.
a) Write the balanced chemical equation.
b) How many moles of $\mathrm{P}_{2} \mathrm{O}_{5}$ could be produced?
c) How many moles of excess reactant remain after the reaction is done?
31. Use Coulomb's law to explain why $\mathrm{Na}^{1^{+}}$ions and Cl^{1-} ions exist as separated ions in liquid water ($\varepsilon=79$) but form ion pairs (NaCl units) in liquid carbon tetrachloride ($\varepsilon=2$).
32. Explain what happens to the energy of an electron and a proton as the distance between them decreases. Explain how the energy of two protons changes as the distance between them decreases.
33. What is the charge in coulombs of a mole of electrons?
34. List the following systems of charged particles from most negative to most positive energies of interaction. Also list the forces from most attractive to most repulsive.
a) +2 and -3 charges separated by 10 nm
b) -2 and -1 charges separated by 8 nm
c) -2 and +2 charges separated by 8 nm
35. List the following systems of charged particles from most negative to most positive energies of interaction. Also list the forces from most attractive to most repulsive.
a) +2 and +2 charges separated by 10 nm
b) -2 and +3 charges separated by 11 nm
c) +2 and +1 charges separated by 6 nm
36. Consider Thomson's experiments with cathode rays.
a) What conclusion was drawn because the "rays" were deflected by electric and magnetic fields?
b) What information about the rays was deduced from the fact that the "rays" moved toward the positive plate of the electric field?
c) What two factors dictated the extent of deflection of the rays?
37. Why didn't the oil droplets in Millikan's experiment all have the same charge? What did the charges all have in common?
38. What conclusions did Rutherford draw from the following observations?
a) Most α-particles passed through the foil with little or no deflection.
b) Some α-particles were deflected at very sharp angles.
c) The fraction of α-particles that was deflected at sharp angles was very small.
39. The deflection of an X^{1+} ion in an electric field is 14% of that of an $\alpha-$ particle. What is the identity of X ? An α-particle is ${ }^{4} \mathrm{He}^{2+}$.
40. The paths of two particles, A and B, which pass between the plates of an electric field designated by '+' and '-', are shown below. One is a cation with a +1 charge, and the other is an anion with a -1 charge. The line in the center represents the path of an uncharged particle.

a) Identify each particle as an anion or a cation.
b) What is the approximate ratio of the masses of the two particles? Express your answer as the ratio (mass of B)/(mass of A).
41. Use Figure 1.7 and the periodic law to determine the formulas of the oxides of the following elements:
a) phosphorus
b) arsenic
c) selenium
d) carbon
e) cesium
42. Use Figure 1.6 and the periodic nature of the elements to predict which element in each pair has the higher boiling point.
a) Rb or Ca
b) Si or Sn
c) C or Pb
d) Cs or Xe
e) He or Xe
43. Use periodic behavior and the given chemical formulas to predict the formulas of the compound formed between the following elements:
a) Pb and Cl , given the formulas TlCl and BiCl_{3}
b) Sc and Br , given the formulas KBr and CaBr_{2}
44. Use periodic behavior and the given chemical formulas to predict the formulas of the compound formed between the following elements:
a) Al and S , given the formulas $\mathrm{Na}_{2} \mathrm{~S}$ and MgS
b) Na and N , given the formulas NaF and $\mathrm{Na}_{2} \mathrm{O}$
45. Determine the number of protons, neutrons and electrons in
a) ${ }^{16} \mathrm{O}^{2-}$
b) ${ }^{27} \mathrm{Al}^{3+}$
c) ${ }^{25} \mathrm{Mg}$
d) ${ }^{19} \mathrm{~F}$
e) ${ }^{48} \mathrm{Ti}^{4+}$
46. Determine the number of protons, neutrons and electrons in
a) ${ }^{75} \mathrm{As}^{5+}$
b) ${ }^{31} \mathrm{P}^{3-}$
c) ${ }^{195} \mathrm{Pt}$
d) ${ }^{235} \mathrm{U}$
e) ${ }^{207} \mathrm{~Pb}^{2+}$
47. Write the symbol for the species with the number of protons and electrons shown below.
a) 34 protons and 36 electrons
b) 26 protons and 23 electrons
c) 47 protons and 47 electrons
48. Write the symbol for the species with the number of protons and electrons shown below.
a) 30 protons and 28 electrons
b) 81 protons and 78 electrons
c) 7 protons and 10 electrons
49. Distinguish between a group and a period. How are the properties of the elements in each related?
50. Identify each of the following elements:
a) the alkali metal in the same period as bromine
b) the lightest alkaline earth metal
c) the noble gas in the same period as silicon
d) the transition metal in the same family as iron and the same period as antimony
51. Identify each of the following elements:
a) the metalloid in the same family as gallium
b) the nonmetal in the same family as germanium
c) the only gas in the fifth period
d) the halogen in the same period as lead
e) the only metal in the same group as sulfur
52. Group the following elements in pairs that are likely to have similar chemical properties: $\mathrm{Li}, \mathrm{N}, \mathrm{F}, \mathrm{P}, \mathrm{K}$, and Br .
53. Group the following elements in pairs that are likely to have similar chemical properties: $\mathrm{Ca}, \mathrm{S}, \mathrm{Sr}, \mathrm{He}, \mathrm{O}, \mathrm{Ar}$.

