Exercise 11.10 (Cont.)

EXERCISE 11.10: Continued

Use the Table of Standard Reduction Potentials to write the net equations for the processes described below and determine their standard cell potentials.

Metallic copper is placed in 1 M AgNO 3.

Oxidation half reaction:
\qquad \rightleftharpoons \qquad $+$ \qquad e^{1-}

Red. 1
Ox. 1

Reduction half reaction:
\qquad
\qquad e^{1-} \rightleftharpoons \qquad

Ox. 2
Red. 2

The number of electrons transferred (or the LCM) is: \qquad
Write the net equation (if any).
$\longrightarrow+\longrightarrow+\longrightarrow$

Red. 1
Ox. 2
Ox. 1
Red. 2

The standard cell potential in volts is:

Metallic chromium is placed in 1 M CuSO 4 .

Oxidation half reaction:
\qquad \rightleftharpoons \qquad $+$ \qquad e^{1-}

Red. 1
Ox. 1

Reduction half reaction:
\qquad $+$ \qquad $\mathrm{e}^{1-} \rightleftharpoons$ \qquad

Ox. 2
Red. 2

The number of electrons transferred (or the LCM) is: Write the net equation (if any).
\qquad
Red. 1
Ox. 2
Ox. 1
Red. 2

The standard cell potential in volts is:

Metallic iron is placed in $1 \mathrm{M} \mathrm{NiSO}_{4}$.

Oxidation half reaction:
\qquad \rightleftharpoons \qquad $+$ \qquad e^{1-}
Red. 1
Ox. 1

Reduction half reaction:
\qquad $+$ \qquad $\mathrm{e}^{1-} \rightleftharpoons$ \qquad
Ox. 2
The number of electrons transferred (or the LCM) is:
Write the net equation (if any).
\qquad $+$ \qquad \rightarrow \qquad $+$ \qquad
Red. 1
Ox. 2
Ox. 1
Red. 2
Red. 2
\qquad

The standard cell potential in volts is:

Metallic sodium is added to water.

Note: in some half reactions, there are substances present that are not involved in the electron transfer but are required for a balanced equations. These substances will be referred to as "other." Other substances are usually $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{1-}$, or H^{1+} when they are not involved in the electron transfer. This example contains one "Other" substance.

Oxidation half reaction:
$\longrightarrow \quad+\quad+$
Red. 1
Ox. 1

Reduction half reaction:
\qquad $+$ \qquad $\mathrm{e}^{1-} \rightleftharpoons$ \qquad $+$ \qquad
Ox. 2
Red. 2
Other
The number of electrons transferred (or the LCM) is:
Write the net equation (if any).
\qquad $+$ \qquad \rightarrow \qquad $+$ \qquad $+$ \qquad
Red. 1
Ox. 2
Ox. 1
Red. 2
Other

The standard cell potential in volts is: \qquad

Metallic chromium is placed in $1 \mathrm{M} \mathrm{AgNO} \mathbf{H}_{3}$.

Oxidation half reaction:
\qquad \rightleftharpoons \qquad $+$ \qquad e^{1-}

Red. 1
Ox. 1

Reduction half reaction:
\qquad
$+$ e^{1-} \rightleftharpoons

Ox. 2
Red. 2

The number of electrons transferred (or the LCM) is:
Write the net equation (if any).
\qquad
\qquad \rightarrow \qquad $+$ \qquad
Red. 1
Ox. 2
Ox. 1
Red. 2

The standard cell potential in volts is:

Metallic copper is placed in 1 M nitric acid.
Oxidation half reaction:
\qquad
Red. 1
Ox. 1

Reduction half reaction:
\qquad $+$ \qquad $+\longrightarrow \mathrm{e}^{1-} \rightleftharpoons$ \qquad $+$ \qquad

Ox. $2 \quad$ Other
Red. 2
Other

The number of electrons transferred (or the LCM) is: \qquad
Write the net equation (if any).
$\longrightarrow+\longrightarrow \rightarrow$

Red. 1
Ox. 2
Other

Ox. 1
Red. 2
Other
The standard cell potential in volts is:

