Exercise 11.10 (Cont.)

EXERCISE 11.10: Continued

letallic coppe	r is place	d in 1 M	AgNO ₃ .			
Oxidation half	reaction:					
	_ =		+ .		e ¹⁻	
Red. 1		Ox. 1				
Reduction half	reaction:					
	_ +		$- e^{1-}$	<u> </u>		
Ox. 2				Re	d. 2	
The number of	electrons t	ransferred	(or the L	CM) is:		
Write the net e	quation (if	any).				
	_ +		$_\rightarrow$		_ +	
		Or 2		Ox 1		Red 2
Red. 1		OX. 2		0.1.1		1000. 2
Red. 1 The standard c	ell potentia	al in volts i	s:			1004. 2
Red. 1 The standard c	ell potentia	al in volts is	s:			10041 2
Red. 1 The standard c fetallic chrom	ell potentia ium is pl	al in volts in aced in 1	s: M CuSC) ₄ .		1001 -
Red. 1 The standard c Ietallic chrom Oxidation half	ell potentia ium is pl reaction:	al in volts in aced in 1	s: M CuSC) ₄ .		
Red. 1 The standard c fetallic chrom Oxidation half	ell potentia ium is pl reaction: _	al in volts i	s: M CuSC) ₄ .	e ^{1–}	100al <u>-</u>
Red. 1 The standard c fetallic chrom Oxidation half Red. 1	ell potentia .ium is pl reaction: _ ≓	Ox. 2 al in volts in aced in 1 Ox. 1	s: M CuSC +) ₄ .	e ^{1–}	100ar <u>-</u>
Red. 1 The standard c Ietallic chrom Oxidation half Red. 1 Reduction half	ell potentia fium is pl reaction:	ox. 2 al in volts in aced in 1 Ox. 1	s: M CuSC) ₄ .	e ¹	100al <u>-</u>
Red. 1 The standard c Ietallic chrom Oxidation half Red. 1 Reduction half	ell potentia ium is pl reaction: $ \Rightarrow -$ reaction: + -	Ox. 2 al in volts in aced in 1 Ox. 1	s: M CuSO +	 D₄.	e ^{1–}	
Red. 1 The standard c fetallic chrom Oxidation half Red. 1 Reduction half Ox. 2	ell potentia ium is pl reaction:	Ox. 2 al in volts in aced in 1 Ox. 1	s: M CuSC + e ¹ ;	D₄.	e ¹⁻	
Red. 1 The standard c Ietallic chrom Oxidation half Red. 1 Reduction half Ox. 2 The number of	ell potentia ium is pl reaction: $ \rightarrow -$ reaction: - + - electrons t	Ox. 2 al in volts in aced in 1 Ox. 1	s: M CuSC <u>+</u> + <u>-</u> e ¹⁻ ; (or the L0	D4. → Ref CM) is:	e ¹⁻ d. 2	
Red. 1 The standard c Ietallic chrom Oxidation half Red. 1 Reduction half Ox. 2 The number of Write the net e	ell potentia ium is pl reaction: $ \rightarrow -$ reaction: - + - electrons t quation (if	Ox. 2 al in volts in aced in 1 Ox. 1 Ox. 1	s: M CuSC +	 D4. D4. Re CM) is: 	e ¹⁻ d. 2	
Red. 1 The standard c Ietallic chrom Oxidation half Red. 1 Reduction half Ox. 2 The number of Write the net e	ell potentia ium is pl reaction: $ \rightarrow -$ reaction: + - electrons t quation (if +	Ox. 2 al in volts in aced in 1 Ox. 1 Ox. 1	s: M CuSC +	Q4. → Ref CM) is:	e ¹⁻ d. 2	
Red. 1 The standard c Ietallic chrom Oxidation half Red. 1 Reduction half Ox. 2 The number of Write the net e Red. 1	ell potentia ium is pl reaction: $ \rightarrow -$ reaction: + - electrons t quation (if - + -	Ox. 2 al in volts is aced in 1 Ox. 1 Cox. 1	s: M CuSC + (or the LC $ \rightarrow$	On 1 D4. → Ref CM) is:	e ¹⁻ d. 2	Bed 2

		\pm		e^{1-}		
Red. 1	Ox. 1			0		
Poduction half read	ation					
neulution nan read		a1—				
· · ·	+	e =	D-1 9			
Ox. 2			neu. 2			
The number of elec	trons transferred (or the LCM) is	: _			
Write the net equa	tion (if any).					
·	+	$_ \rightarrow _$	+			
Red. 1	Ox. 2	Ox.	1	R	ted. 2	
The standard cell r	potential in volts is	:				
Setallic sodium is ote: in some half re quired for a balance $_{2}O$, OH^{1-} , or H^{1+} bstance.	s added to water eactions, there are a ed equations. Thes when they are not	• substances pres e substances w t involved in th	sent that an ill be referr ne electron	re not invo ed to as "c transfer.	lved in the el other." Other This example	ectron trans substances e contains of
fetallic sodium is ote: in some half re- equired for a balanc ${}_{2}O, OH^{1-}, \text{ or } H^{1+}$ ubstance. Oxidation half reac	s added to water eactions, there are a ed equations. Thes when they are not ction:	substances pres e substances w t involved in th	ent that an ill be referr ne electron	re not invo ed to as "c transfer. "	lved in the el other." Other This example	ectron trans substances e contains or
fetallic sodium is ote: in some half re- equired for a balance _2O, OH ¹⁻ , or H ¹⁺ ibstance. Oxidation half reac 	s added to water eactions, there are a ed equations. Thes when they are not etion: $\rightleftharpoons \qquad \qquad$	substances pres e substances w t involved in th +	Sent that an ill be referr ne electron	te not invo ed to as "c transfer. d e^{1-}	lved in the el ther." Other This example	ectron trans substances e contains of
fetallic sodium is ote: in some half re- equired for a balance 2O, OH ¹⁻ , or H ¹⁺ ibstance. Oxidation half reac Red. 1	s added to water eactions, there are a ed equations. Thes when they are not etion: \rightleftharpoons Ox. 1	• substances pres æ substances w t involved in tl +	sent that an ill be referr ne electron	e not invo ed to as "c transfer. " e ^{1—}	lved in the el other." Other This example	ectron trans substances e contains or
fetallic sodium is ote: in some half re- equired for a balance ${}_{2}$ O, OH ¹⁻ , or H ¹⁺ ibstance. Oxidation half reace Red. 1 Red. 1	s added to water eactions, there are a ed equations. Thes when they are not etion: \rightleftharpoons Ox. 1 ction:	• substances pres • substances w t involved in t +	sent that an ill be referr ne electron	e not invo ed to as "c transfer. " e ^{1–}	lved in the el other." Other This example	ectron trans substances e contains or
Ietallic sodium is ote: in some half re- equired for a balanc 2O, OH ¹⁻ , or H ¹⁺ ibstance. Oxidation half read Red. 1 Reduction half read	s added to water eactions, there are a ed equations. Thes when they are not etion: \rightleftharpoons Ox. 1 etion: +	• substances pres to substances with to involved in th - + +	Sent that an ill be referr ne electron	e not invo ed to as "c transfer. " e ¹⁻ +	lved in the el other." Other This example	ectron trans substances e contains or
Jetallic sodium is ote: in some half re- equired for a balance 2,0, OH ¹⁻ , or H ¹⁺ ibstance. Oxidation half reace Red. 1 Reduction half reace Ox. 2	s added to water eactions, there are a ed equations. Thes when they are not etion: \rightleftharpoons Ox. 1 etion: +	• substances pres we substances we t involved in th + $e^{1-} \rightleftharpoons$	Red. 2	re not invo ed to as "c transfer. " e ¹⁻ +	lved in the el other." Other This example	ectron trans substances e contains or
Ietallic sodium is ote: in some half re- equired for a balance 2O, OH ¹⁻ , or H ¹⁺ ibstance. Oxidation half read	s added to water eactions, there are a ed equations. Thes when they are not ction: Ox. 1 ction: +	• substances pres we substances we t involved in th - + +	Red. 2	re not invo ed to as "c transfer. " e^{1-} +	lved in the el other." Other This example Other	ectron trans substances e contains of
Ietallic sodium is iote: in some half re- equired for a balance 2O, OH ¹⁻ , or H ¹⁺ ibstance. Oxidation half read	s added to water eactions, there are a ed equations. Thes when they are not ction: →	• substances pres we substances w t involved in th - + +	Red. 2	e not invo ed to as "c transfer. " e ¹⁻ +	lved in the el other." Other This example Other	ectron trans substances e contains or
fetallic sodium is iote: in some half re- equired for a balance 2O, OH ¹⁻ , or H ¹⁺ ibstance. Oxidation half read	s added to water eactions, there are ed equations. Thes when they are nor etion: →Ox. 1 etion: + etrons transferred (a tion (if any).	• substances pres we substances w t involved in th - +	Red. 2	re not invo ed to as "c transfer. " e ¹⁻ +	lved in the el other." Other This example Other 	ectron trans substances e contains or

Oxidation half r	eaction:				
		+		_ e ¹⁻	
Red. 1	Ox. 1				
Reduction half r	eaction:				
	. +	e ¹⁻ =	⇒		
Ox. 2			Red. 2		
The number of e	electrons transferred	(or the LC	M) is:		
Write the net eq	uation (if any).				
	. +	→		+	
Red. 1	Ox. 2		Ox. 1	Red. 2	
The standard ce	ll potential in volts is	s: _		_	
letallic copper	is placed in 1 M	nitric acie	d.		
l etallic copper Oxidation half r	is placed in $1 M$ eaction:	nitric acio	d.		
l etallic copper Oxidation half r	is placed in 1 M reaction: \Rightarrow	nitric acio +	d.	_ e ¹⁻	
Ietallic copper Oxidation half r Red. 1	is placed in 1 M : eaction: $\Rightarrow \qquad \qquad$	nitric acie +	d.	- e ¹⁻	
Ietallic copper Oxidation half r Red. 1 Reduction half r	eaction: \Rightarrow Ox. 1 eaction:	nitric ació	d.	- e ¹⁻	
Ietallic copper Oxidation half r Red. 1 Reduction half r	e is placed in 1 M = eaction: $e \rightleftharpoons \qquad $	nitric ació + +	d. e ^{1−} ≠	_ e ^{1_}	_ +
Ietallic copper Oxidation half r Red. 1 Reduction half r Ox. 2	T is placed in 1 M is eaction: \Rightarrow	nitric ació + +	d. e ^{1−} ≂	_ e ^{1−}	_ + Other
Ietallic copper Oxidation half r Red. 1 Reduction half r Ox. 2 The number of e	r is placed in 1 M : eaction: . ⇒ Ox. 1 eaction: . + Other	nitric acio + +	d. e ¹⁻ =	_ e ^{1−} ⇒ Red. 2	_ + Other
Ietallic copper Oxidation half r Red. 1 Reduction half r Ox. 2 The number of e Write the net equation	e is placed in 1 M : eaction: e \Rightarrow $Ox. 1$ eaction: e $+$ $Otherelectrons transferreduation (if any).$	nitric acio	d. e ^{1−} ≠ !M) is:	_ e ^{1−} ⇒ Red. 2	_ + Other
Ietallic copper Oxidation half r Red. 1 Reduction half r Ox. 2 The number of e Write the net equation	e is placed in 1 M is eaction: e \Rightarrow $Ox. 1$ reaction: e $+$ $Otherelectrons transferreduation (if any).$	nitric acio + + (or the LC	d. e ^{1−} ≠ !M) is:	e^{1-} e^{1-} Red. 2 \rightarrow	_ + Other
Ietallic copper Oxidation half r Red. 1 Reduction half r Ox. 2 The number of e Write the net eq Red. 1	eaction: $\Rightarrow =$	nitric acio + + (or the LC +	d. e ^{1−} = PM) is: Other	$= e^{1-}$ $\stackrel{=}{=} $ Red. 2 $$	_ + Other
Ietallic copper Oxidation half r Red. 1 Reduction half r Ox. 2 The number of e Write the net eq Red. 1	eaction: $\Rightarrow =$	nitric acio	d. e ^{1−} ₹ PM) is: Other	e^{1-} Red. 2 \rightarrow	_ + Other
Ietallic copper Oxidation half r Red. 1 Reduction half r Ox. 2 The number of e Write the net eq Red. 1	$\begin{array}{c} \text{is placed in 1 M :}\\ \text{eaction:}\\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ } \\ \end{array} \\ } \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} \\ } \\ \end{array} \\ } \\ \end{array} } \\ \end{array} } \\ } \\ \end{array} } \\ \end{array} } \\	nitric acio + + (or the LC +	d. e ¹⁻ = M) is: Other	$\stackrel{-e^{1-}}{\longrightarrow} \qquad \qquad$	_ + Other
Ietallic copper Oxidation half r Red. 1 Reduction half r Ox. 2 The number of e Write the net eq Red. 1 Ox. 1	$\begin{array}{c} \text{r is placed in 1 M :}\\ \text{eaction:}\\ \rightleftharpoons & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	nitric acio + + (or the LC + +	d. e ¹⁻ = M) is: Other Other	e^{1-} Red. 2 \rightarrow	_ + Other