Appendix D Exercises

Use the following molar masses to do the following problems:

C ₄ H ₈ : 56.10 g/mol	C ₄ H ₉ OH : 74.12 g/mol
Fe ₂ O ₃ : 159.70 g/mol	Al ₂ O ₃ : 101.96 g/mol
$V_2O_5: 181.88 \text{ g/mol}$	NH ₄ VO ₃ : 116.98 g/mol
NH ₃ : 17.03 g/mol	V ₂ O ₃ : 149.88 g/mol
Cu ₂ S: 159.17 g/mol	CuO: 79.55 g/mol
Cu ₂ O : 95.55 g/mol	AgCl : 143.4 g/mol

1. In the presence of acids, water can react with alkenes to form alcohols: $C_4H_8 + H_2O \rightarrow C_4H_9OH$

If 250 g of C_4H_8 reacts with excess H_2O , how many grams of C_4H_9OH can be produced?

- - $2\mathrm{Al}(\mathrm{s}) + \mathrm{Fe}_2\mathrm{O}_3(\mathrm{s}) \rightarrow 2\mathrm{Fe}(\mathrm{s}) + \mathrm{Al}_2\mathrm{O}_3(\mathrm{s})$
 - a) If 10.0 g of Al reacts with excess Fe_2O_3 , how many grams of Al_2O_3 can be produced?
 - b) If 25.0 g of Al reacts with 10.0 g of Fe₂O₃, how many grams of Al₂O₃ can be produced?
 - c) In the experiment in part b, what is the mass of the excess reactant remaining after complete reaction?
- 3. Vanadium(V) oxide reacts with ammonia and water as follows: $V_2O_5 + 2NH_3 + H_2O \rightarrow 2NH_4VO_3$
 - a) If 50.0 g of V_2O_5 is reacted with excess ammonia and water, how many grams of NH_4VO_3 can be produced?
 - b) How many grams of NH_3 are required to completely react with 50.0 g of V_2O_5 ?
- 4. Vanadium(III) oxide can be made by reduction of vanadium(V) oxide with hydrogen:

 $V_2O_5(s) + 2H_2(g) \rightarrow V_2O_3(s) + 2H_2O(l)$

- a) How many liters of H₂, measured at 1.00 atm and 30 $^{\circ}$ C, are required to completely react with 75.0 g of V₂O₅?
- b) If 10.0 g of V_2O_5 reacts with 1.65 L of H_2 , measured at 1.00 atm and 30 °C, how many grams of V_2O_3 can be produced?

5. Copper(I) sulfide is prepared by heating copper and sulfur in the absence of air:

 $2Cu(s) + S(s) \rightarrow Cu_2S(s)$

- a) How many grams of Cu₂S can be produced from the reaction of 25.0 g of Cu with excess S?
- **b)** How many grams of sulfur are required to form $75.0 \text{ g of } \text{Cu}_2\text{S}?$
- c) If a mixture of 135 g of Cu and 45 g of S is allowed to react, how many grams of Cu₂S could be produced?
- d) How many grams of the excess reactant remain in the experiment in part c?
- **6.** Copper(I) oxide can be prepared by thermal decomposition of copper(II) oxide:

 $4CuO(s) \rightarrow 2Cu_2O(s) + O_2(g)$

- a) How many grams of Cu₂O can be produced upon the decomposition of 450 g of CuO?
- **b)** How many liters of O₂, collected at 1.00 atm and 27 °C, can be produced by the decomposition of 450 g of CuO?
- **7.** The silver ions in aqueous silver sulfate can be precipitated by addition of excess chloride:

 $Ag_2SO_4(aq) + 2NaCl(aq) \rightarrow 2AgCl(s) + Na_2SO_4(aq)$

- a) How many grams of silver chloride can be formed when 35.0 mL of a 0.100 M Ag₂SO₄ solution is reacted with excess sodium chloride solution?
- **b)** If 22.7 mL of a silver sulfate solution of unknown concentration yields 0.985 g of AgCl upon reaction with excess sodium chloride solution, what is the concentration of the silver sulfate solution?
- **8.** Zn metal reacts with hydrochloric acid to produce hydrogen gas and zinc(II) chloride:

 $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

- a) If 15.0 g of Zn are added to excess HCl(aq), how many liters of H₂(g), collected at 27 °C and 725 mm Hg, are produced?
- b) If excess Zn is added to 25.0 mL of 0.025 M HCl(aq), how many liters H₂(g), collected at 27 °C and 725 mm Hg, can be produced?

9. Potassium permanganate and iron(II) chloride undergo an electron transfer reaction in acid solution:

```
\begin{split} KMnO_4(aq) + 5FeCl_2(aq) + 8HCl \rightarrow MnCl_2(aq) + 5FeCl_3(aq) + KCl(aq) + 4 \ H_2O(l) \\ How many mL of 0.150 \ M \ FeCl_2(aq) \ are needed to completely react \\ with \end{split}
```

13.7 mL of 0.110 M KMnO₄?

- **10.** Citric acid reacts with sodium hydroxide in a proton transfer reaction: $H_3C_6H_5O_7(aq) + 3NaOH(aq) \rightarrow 3H_2O(l) + Na_3C_6H_5O_7(aq)$
 - a) How many mL of 0.125 M NaOH(aq) are required to completely react with 25.0 mL of 0.0695 M citric acid?
 - b) If 37.5 mL of 1.25 M NaOH(aq) is needed to completely react with 22.5 mL of a citric acid solution, what is the concentration of the citric acid solution?

ANSWERS:

1.	330 g		
2 .	a) 18.9 g	b) 6.38 g	c) 21.6 g
3.	a) 64.3 g	b) 9.34 g	
4.	a) 20.5 L	b) 4.97 g	
5.	a) 31.3 g d) 11 g	b) 15.1 g	c) 169 g
6 .	a) 405 g	b) 34.8 L	
7 .	a) 1.00 g	b) 0.151 M	
8.	a) 5.92 L	b) 8.07 mL	
9.	50.2 mL		
10.	a) 41.7 mL	b) 0.694 M	