Use the following molar masses to do the following problems

$\mathrm{C}_{4} \mathrm{H}_{8}: 56.10 \mathrm{~g} / \mathrm{mol}$	$\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}: 74.12 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}: 159.70 \mathrm{~g} / \mathrm{mol}$	$\mathrm{Al}_{2} \mathrm{O}_{3}: 101.96 \mathrm{~g} / \mathrm{mol}$
$\mathrm{V}_{2} \mathrm{O}_{5}: 181.88 \mathrm{~g} / \mathrm{mol}$	$\mathrm{NH}_{4} \mathrm{VO}_{3}: 116.98 \mathrm{~g} / \mathrm{mol}$
$\mathrm{NH}_{3}: 17.03 \mathrm{~g} / \mathrm{mol}$	$\mathrm{V}_{2} \mathrm{O}_{3}: 149.88 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Cu}_{2} \mathrm{~S}: 159.17 \mathrm{~g} / \mathrm{mol}$	$\mathrm{CuO}: 79.55 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Cu}_{2} \mathrm{O}: 95.55 \mathrm{~g} / \mathrm{mol}$	$\mathrm{AgCl}: 143.4 \mathrm{~g} / \mathrm{mol}$

1. In the presence of acids, water can react with alkenes to form alcohols: $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$
If 250 g of $\mathrm{C}_{4} \mathrm{H}_{8}$ reacts with excess $\mathrm{H}_{2} \mathrm{O}$, how many grams of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}$ can be produced?
2. Aluminum reacts with iron(III) oxide in the "thermite reaction":

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

a) If 10.0 g of Al reacts with excess $\mathrm{Fe}_{2} \mathrm{O}_{3}$, how many grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$ can be produced?
b) If 25.0 g of Al reacts with 10.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$, how many grams of $\mathrm{Al}_{2} \mathrm{O}_{3}$ can be produced?
c) In the experiment in part b, what is the mass of the excess reactant remaining after complete reaction?
3. Vanadium (V) oxide reacts with ammonia and water as follows: $\mathrm{V}_{2} \mathrm{O}_{5}+2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{4} \mathrm{VO}_{3}$
a) If 50.0 g of $\mathrm{V}_{2} \mathrm{O}_{5}$ is reacted with excess ammonia and water, how many grams of $\mathrm{NH}_{4} \mathrm{VO}_{3}$ can be produced?
b) How many grams of NH_{3} are required to completely react with 50.0 g of $\mathrm{V}_{2} \mathrm{O}_{5}$?
4. Vanadium(III) oxide can be made by reduction of vanadium(V) oxide with hydrogen:

$$
\mathrm{V}_{2} \mathrm{O}_{5}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{V}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a) How many liters of H_{2}, measured at 1.00 atm and $30^{\circ} \mathrm{C}$, are required to completely react with 75.0 g of $\mathrm{V}_{2} \mathrm{O}_{5}$?
b) If 10.0 g of $\mathrm{V}_{2} \mathrm{O}_{5}$ reacts with 1.65 L of H_{2}, measured at 1.00 atm and $30^{\circ} \mathrm{C}$, how many grams of $\mathrm{V}_{2} \mathrm{O}_{3}$ can be produced?
5. Copper(I) sulfide is prepared by heating copper and sulfur in the absence of air:
$2 \mathrm{Cu}(\mathrm{s})+\mathrm{S}(\mathrm{s}) \rightarrow \mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})$
a) How many grams of $\mathrm{Cu}_{2} \mathrm{~S}$ can be produced from the reaction of 25.0 g of Cu with excess S ?
b) How many grams of sulfur are required to form 75.0 g of $\mathrm{Cu}_{2} \mathrm{~S}$?
c) If a mixture of 135 g of Cu and 45 g of S is allowed to react, how many grams of $\mathrm{Cu}_{2} \mathrm{~S}$ could be produced?
d) How many grams of the excess reactant remain in the experiment in part c?
6. Copper(I) oxide can be prepared by thermal decomposition of copper(II) oxide: $4 \mathrm{CuO}(\mathrm{s}) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
a) How many grams of $\mathrm{Cu}_{2} \mathrm{O}$ can be produced upon the decomposition of 450 g of CuO ?
b) How many liters of O_{2}, collected at 1.00 atm and $27^{\circ} \mathrm{C}$, can be produced by the decomposition of 450 g of CuO ?
7. The silver ions in aqueous silver sulfate can be precipitated by addition of excess chloride:

$$
\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

a) How many grams of silver chloride can be formed when 35.0 mL of a $0.100 \mathrm{M} \mathrm{Ag}_{2} \mathrm{SO}_{4}$ solution is reacted with excess sodium chloride solution?
b) If 22.7 mL of a silver sulfate solution of unknown concentration yields 0.985 g of AgCl upon reaction with excess sodium chloride solution, what is the concentration of the silver sulfate solution?
8. Zn metal reacts with hydrochloric acid to produce hydrogen gas and zinc(II) chloride:
$\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
a) If 15.0 g of Zn are added to excess $\mathrm{HCl}(\mathrm{aq})$, how many liters of $\mathrm{H}_{2}(\mathrm{~g})$, collected at $27^{\circ} \mathrm{C}$ and 725 mm Hg , are produced?
b) If excess Zn is added to 25.0 mL of $0.025 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$, how many liters $\mathrm{H}_{2}(\mathrm{~g})$, collected at $27^{\circ} \mathrm{C}$ and 725 mm Hg , can be produced?
9. Potassium permanganate and iron(II) chloride undergo an electron
transfer reaction in acid solution:
$\mathrm{KMnO}_{4}(\mathrm{aq})+5 \mathrm{FeCl}_{2}(\mathrm{aq})+8 \mathrm{HCl} \rightarrow \mathrm{MnCl}_{2}(\mathrm{aq})+5 \mathrm{FeCl}_{3}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
How many mL of $0.150 \mathrm{M} \mathrm{FeCl}_{2}(\mathrm{aq})$ are needed to completely react
with
13.7 mL of $0.110 \mathrm{M} \mathrm{KMnO}_{4}$?
10. Citric acid reacts with sodium hydroxide in a proton transfer reaction:
$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})$
a) How many mL of $0.125 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ are required to completely react with 25.0 mL of 0.0695 M citric acid?
b) If 37.5 mL of $1.25 \mathrm{M} \mathrm{NaOH(aq)}$ is needed to completely react with 22.5 mL of a citric acid solution, what is the concentration of the citric acid solution?

ANSWERS:

1. 330 g
2. a) 18.9 g
b) 6.38 g
c) 21.6 g
3. a) 64.3 g
b) 9.34 g
4. a) 20.5 L
b) 4.97 g
5. a) 31.3 g
d) 11 g
b) 15.1 g
c) 169 g
6. a) 405 g
b) 34.8 L
7. a) 1.00 g
b) 0.151 M
8. a) 5.92 L
b) 8.07 mL
9. 50.2 mL
10. a) 41.7 mL
b) 0.694 M
