- **1.** Define the term "isoelectronic."
- 2. Which of the following compounds are ionic?
 a) SiCl₄
 b) ScCl₃
 c) NCl₃
 d) NH₄Cl
- 3. Which of the following compounds are ionic?
 a) KCN
 b) HNO₂
 c) CoPO₄
 d) NH₄NO₂
- **4.** Metals and nonmetals tend to achieve noble gas configurations. In each case, explain how they do it?
- 5. What are the charges on the ions formed by the main group elements?
- **6.** How many ions are in the formula of a compound composed of a 2A metal and a 7A nonmetal? Give two examples of compounds with this type of formula.
- **7.** Oxygen can have a positive oxidation state when bound to only one element. What is the element? Use orbital energies to explain.
- **8.** Use orbital energies to explain why hydrogen is -1 when bound to metals and +1 when bound to nonmetals.
- 9. Which element in each pair would have the positive oxidation state. a) N & O **b)** Cl & P **c)** S & Sn d) K & N **10.** Which element in each pair would have the positive oxidation state. **c)** S & Ca a) N & H b) C & O d) F & O **11.** Write electron configurations for the following ions. a) Ca^{2+} **b)** Ga³⁺ c) Co^{3+} d) I^{1-} **12.** Write electron configurations for the following ions. a) Te²⁻ **b)** P³⁻ c) Pb^{2+} **d)** In¹⁺
- **13.** Explain the following observations.
 - **a)** K^{1+} is larger than Na^{1+} .
 - **b)** Na is larger than Cl, but Na^{1+} is much smaller than Cl^{1-} .
 - **c)** Lead forms two oxides, PbO and PbO_2 .

14.	Determine the oxidation state of the underlined atom.									
	a)	K <u>Mn</u> O ₄	b)	$\underline{C}_{12}H_{22}O_{11}$	c)	<u>Co</u> PO ₄	d)	\underline{Na}_2O_2		
15.	Determine the oxidation state of the underlined atom.									
	a)	<u>C</u> ₆₀	b)	Li <u>Al</u> H ₄	c)	$\underline{O}F_2$	d)	Ca <u>Si</u> O ₃		
16.	Name the following compounds:									
	a)	$CaCl_2$	b)	Fe(NO ₃) ₂	c)	K ₂ CO ₃	d)	CoCl_3		
17.	Nar	ne the following	com	pounds:						
	a) $Zn_3(PO_4)_2$		b) Ag ₂ S		c) Cr_2O_3		d) NH ₄ Cl			
18.	8. Name the following ionic compounds using the "hydrogen" prefix f anion:									
	a)	KHSO ₄	b) I	NaH ₂ PO ₄	c) L	i ₂ HPO ₄	d) ($Co(HSO_3)_2$		
19.	Wh	What two names can be used for $Ca(HCO_3)_2$?								

- **20.** Predict the formulas of the arsenate and arsenite ions.
- 21. Predict the formulas of the vanadate and titanate ions.

Use the energy diagram for the valence orbitals of atoms X, Y, and Z shown to the right in Exercises 22, 23, and 24.

- **22.** Consider the compound formed between X and Y.
 - **a)** What is the formula of the ionic compound formed between these two elements?
 - **b)** What is the oxidation state of X in the compound?
 - c) What is the oxidation state of Y in the compound?

Energy

- **23.** Consider the compound formed between Y and Z.
 - a) What are the maximum and minimum oxidation states of Y?
 - **b)** What are the maximum and minimum oxidation states of Z?
 - **c)** What is the formula of the compound that is most likely formed between atoms Y and Z in their maximum and minimum oxidation states?
- **24.** Elements X, Y, and Z are all main group elements. In which groups are they located? (See Exercises 22 and 23.)

25.	Write	formulas	for t	he fol	lowing	compo	ounds:
					0		

- a) gallium(III) oxide b) strontium bromide
- c) zinc acetate d) manganese(II) sulfide

26. Write formulas for the following compounds.

- a) strontium phosphide b) potassium dichromate
- c) platinum(IV) oxide d) aluminum nitrate
- 27. Write formulas for the following compounds:
 a) sodium bicarbonate
 b) iron(II) hydrogensulfate
 c) calcium dihydrogenphosphate
 d) magnesium hydrogensulfite
- **28.** What is the mass of 0.057 mol of magnesium chlorate?
- **29.** How many moles of iron(III) oxide are present in a 5.00 g sample?
- **30.** How many moles of oxygen atoms are present in 0.20 mol aluminum dichromate?
- **31.** A sample of calcium nitrate contains 0.025 mol of oxygen atoms. What is the mass of the sample?
- **32.** How many moles of bicarbonate ions are present in 12.0 g of aluminum bicarbonate?
- **33.** How many moles of protons are required to convert all of the phosphate ions in 25.0 g of magnesium phosphate into dihydrogen phosphate ions?
- **34.** How many moles of electrons would be required to convert 10.0 g of phosphorus atoms into phosphide ions?
- **35.** How many moles of electrons must be removed to convert 7.5 g Zn to zinc ions?