- **1.** Distinguish between the terms 'solute' and 'solvent.' Give an example of a solution and identify each component.
- **2.** Distinguish between 'homogenous' and 'heterogeneous' mixtures. Give an example of each.

Review Appendix C (Molarity) if you need help on Exercises 3-8.

- 3. What is the concentration of nitrate ion in each of the following solutions?
 a) 0.25 M KNO₃ b) 0.10 M Al(NO₃)₃ c) 0.20 M Ca(NO₃)₂
- 4. What is the concentration of all ions in each of the following solutions?
 a) 0.16 M CaCl₂
 b) 0.080 M Na₂SO₄
 c) 0.060 M KBr
- **5.** A solution is prepared by dissolving 25.0 g of sodium sulfate in enough water to prepare 250 mL of solution.
 - a) What is the molarity of sodium sulfate in the solution?
 - **b)** What are the molarities of the sodium and sulfate ions in the solution?
 - **c)** How many moles of sodium ions are present in 17 mL of the solution?
- 6. A solution is labeled $0.0650 \text{ M K}_3\text{PO}_4$.
 - a) How many moles of K^{1+} ions are present in 500 mL of this solution?
 - **b)** How many moles of PO_4^{3-} ions are present in 500 mL of this solution?
 - c) How many grams of K_3PO_4 are present in 50 mL of this solution?
- **7.** A solution of K_2SO_4 , which has a volume of 75.0 mL, contains 0.0048 moles of potassium ions. What is the molarity of the K_2SO_4 solution?
- **8.** What mass of KCl is required to make 45 mL of a 0.13 M KCl solution? How many moles of chloride ion are present in the solution?
- 9. What are the two steps involved in solvation?
- **10.** Explain the meaning of *like dissolves like*.
- **11.** Explain the hydrophobic effect.
- **12.** Indicate whether each of the following substances are more soluble in H_2O or C_6H_{14} :
 - **a)** KI **b)** C_8H_{18} **c)** grease **d)** $CH_3(CH_2)_{12}OH$

13. Indicate whether each of the following substances are more soluble in H_2O or C_6H_{14} :

a) HF b) CH_3OH c) $NaC_2H_3O_2$ d) CH_4

- **14.** What are the characteristics of a good detergent?
- **15.** Differentiate between a monolayer and a micelle. Under what conditions is a detergent expected to form in each?
- **16.** Represent $CH_3(CH_2)_{15}COONa$ with symbol shown in Figure 10.4d.
- 17. Identify each of the following as a weak, strong, or nonelectrolyte:
 a) CCl₄
 b) NH₄NO₃
 c) H₂CO₃
 d) HNO₃
 e) CH₃OH
- 18. Identify each of the following as a weak, strong, or nonelectrolyte:
 a) KF
 b) CH₃Cl
 c) HF
 d) NH₃
 e) CH₃COONa
- 19. What are the predominant solute species in aqueous solutions of the following? Write the molecule or the separated ions as appropriate.
 a) CO₂
 b) CaCl₂
 c) PF₃
 d) K₂Cr₂O₇
 e) KOH
- 20. What are the predominant solute species in aqueous solutions of the following? Write the molecule or the separated ions as appropriate.
 a) CoCl₃
 b) Pb(NO₃)₂
 c) NH₄F
 d) C₂H₅OH
 e) BrF₃
- **21.** What is the ratio of the force of attraction experienced by Ca^{2+} and SO_4^{2-} to that experienced by Al^{3+} and Cl^{1-} ? Assume that the ions are the same distance apart and in the same medium.
- **22.** What is the ratio of the force of attraction experienced by Na¹⁺ and Cl¹⁻ to that experienced by Al³⁺ and P³⁻? Assume that the ions are the same distance apart and in the same medium.
- **23.** What property of water makes it a good solvent for ionic compounds? How is this property expressed in Coulomb's Law?
- **24.** Which solid(s) can be used to make a solution that is 0.1 M in Pb^{2+} ions? **a)** Pb(ClO₄)₂ **b)** PbCl₂ **c)** PbCrO₄ **d)** PbCO₃ **e)** PbS
- **25.** Which solid(s) can be used to make a solution that is 0.1 M in Zn^{2+} ions? **a)** $Zn(ClO_4)_2$ **b)** $ZnCl_2$ **c)** $ZnCrO_4$ **d)** $ZnCO_3$ **e)** ZnS

26. Which solid(s) can be used to make a solution that is $0.1 \text{ M in SO}_4^{2-1}$ ions?

a) $PbSO_4$ b) K_2SO_4 c) $CuSO_4$ d) $BaSO_4$ e) $FeSO_4$

27. Which solid(s) can be used to make a solution that is 0.1 M in CrO₄²⁻ ions?

a) $ZnCrO_4$ **b)** K_2CrO_4 **c)** $CuCrO_4$ **d)** $BaCrO_4$ **e)** $FeCrO_4$

- **28.** A student finds two unlabelled jars, one is $BaSO_4$ and the other is Na_2SO_4 . Suggest an easy way to determine which jar contains Na_2SO_4 .
- **29.** A solution is known to contain one of the following cations: Na^{1+} , Ag^{1+} , or Fe^{2+} . The addition of chloride ion to part of the solution had no apparent effect, but addition of CrO_4^{2-} ion resulted in a precipitate. What is the identity of the cation in the original solution?
- **30.** A solution is known to contain one of the following anions: Cl^{1-} , SO_4^{2-} , or NO_3^{1-} . What is the identity of the anion if a precipitate was observed with the addition of Pb²⁺, but no precipitate forms with Ag¹⁺?
- **31.** Write net equations for any precipitation reactions that occur when the following 0.1 M solutions are mixed or write 'no reaction' if appropriate.
 - a) manganese(II) chloride + sodium sulfide
 - **b)** iron(III) chloride + sodium carbonate
 - **c)** potassium sulfide + zinc nitrate
 - **d)** silver sulfate + barium iodide
 - e) lead acetate + lithium hydroxide
 - f) ammonium phosphate + copper(II) sulfate
- **32.** Write net equations for any precipitation reactions that occur when the following 0.1 M solutions are mixed or write 'no reaction' if appropriate.
 - **a)** potassium chromate + nickel(II) chloride
 - **b)** cadmium nitrate + ammonium carbonate
 - **c)** manganese(II) acetate + zinc sulfate
 - d) lithium perchlorate + silver acetate
 - e) barium nitrate + silver sulfate
 - **f)** cesium hydroxide + iron(III) acetate

33. Write the chemical equation of the dissolution of the following salts in water and give the K_{sp} expression.

a) FeS	b) PbCl ₂	c) $Ca_3(PO_4)_2$
	2	/

34. Write the chemical equation of the dissolution of the following salts in water and give the K_{sp} expression.:

a) $A1(OH)_{a}$	b) Fe ₂ S ₂	c) CoPO
a) $AI(OII)_3$	$D_{1} = C_{2} = C_{3}$	\mathbf{U}_{1}

- **35.** What is the maximum concentration of Fe^{2+} ions that can exist in a solution in which $[\text{OH}^{1-}] = 1.0 \times 10^{-7} \text{ M}$? K_{sp} (Fe(OH)₂)= 8.0x10⁻¹⁶
- **36.** What is the maximum concentration of Pb^{2+} ions that can exist in a solution which is 0.10 M in chloride ion? K_{sp} (PbCl₂)= 1.7x10⁻⁵.
- **37.** What is the K_{sp} of AgCN if the concentrations of silver and cyanide ions in a saturated solution of silver cyanide are each 1.1×10^{-8} M?
- **38.** What is the K_{sp} of BaCO₃ if the concentrations of barium and carbonate ions in a saturated solution of barium carbonate are each 9.0×10^{-5} M?

Review Appendix D4 if you need help on Exercises 39 - 42.

- **39.** A student mixes 1.50 L of 0.20 M K₂CrO₄ and 1.20 L of 0.30 M AgNO₃.
 - a) Write the net reaction that occurs.
 - **b)** How many moles of CrO_4^{2-} ion were added?
 - c) How many moles of Ag^{1+} ion were added?
 - **d)** How many moles of Ag_2CrO_4 precipitate?
 - **e)** How many grams of Ag_2CrO_4 precipitate?
- **40.** A student mixes 25.0 mL of 0.20 M KCl and 15.0 mL of 0.30 M Pb(NO₃)₂.
 - **a)** Write the net reaction that occurs.
 - **b)** How many moles of Cl¹⁻ ion were added?
 - c) How many moles of Pb^{2+} ion were added?
 - d) How many moles of PbCl₂ precipitate?
 - e) How many grams of PbCl₂ precipitate?

Chapter 10 Exercises

- **41.** A student mixes 0.36 L of 0.10 M Ba(ClO₄)₂ and 0.52 L of 0.10 M Na₂SO₄.
 - a) Write the net reaction that occurs.
 - **b)** How many moles of SO_4^{2-} ion were added?
 - c) How many moles of Ba^{2+} ion were added?
 - **d)** How many moles of BaSO₄ precipitate?
 - e) How many grams of BaSO₄ precipitate?
- **42.** A student mixes 78 mL of 0.17 M Fe(NO₃)₃ and 85 mL of 0.20 M

Na₂CO₃.

- **a)** Write the net reaction that occurs.
- **b)** How many moles of CO_3^{2-} ion were added?
- c) How many moles of Fe^{3+} ion were added?
- **d)** How many moles of $Fe_2(CO_3)_3$ precipitate?
- e) How many grams of $Fe_2(CO_3)_3$ precipitate?