Early Experiments

Distinguish between a qualitative observation and a quantitative observation. Give two examples of each.

qualitative observation - An observation of an object, property, or phenomenon which not measured or quantified (involves no numbers). Examples: a) the rock is heavy; b) the water sample contains a small amount of benzene; c) upon burning magnesium in air, a solid white residue was formed.

quantitative observation - one in which an object, property, or phenomenon or object is measured or quantified. Examples: a) the rock weighs 79.3 kg; b) the concentration of benzene in the water sample is 2.3 x 10⁻⁷ mol/liter; c) upon burning 10.0 g of magnesium in air, 16.6 g of a solid white residue was formed.

- Indicate whether each of the following represents a mixture of atoms, a mixture of molecules, or a mixture of atoms and molecules. Is each a mixture of elements, compounds, or elements and compounds?
 - a) Each unit contains only a single atom, so it is a mixture of atoms and elements.
 - b) Single spheres are atoms and elements, two bound spheres are molecules. Molecules of two blue spheres contain only one atom type, so they are elements. Molecules of blue and red spheres contain different atom types, so they are compounds.
 - The single spheres are atoms and elements. The units containing a green and a yellow sphere are molecules or compounds.
 - All units contain more than one sphere and are molecules. Some are composed of the same atom type (blue) and are elements, but others contain different atom types (yellow and green) and are compounds.
- 5. Classify each of the following as an element or compound:
 - a) P₄- element
- b) Fe element
- c) C_3H_6O compound
- d) SO_2 compound
- e) O_3 element

- 7. Classify each of the following as an atom or a molecule:
 - a) P₄- molecule
- b) Fe atom
- c) C_3H_6O molecule
- d) SO₂ molecule
- e) O_3 molecule

- 9. Classify each of the following as an atom, molecule, anion or cation:
 - a) NH₃ molecule b) NH₄¹⁺ cation
- c) N^{3} anion
- d) CH₃COO¹⁻ anion
- e) Si atom

- 11. Give the name of each of the following elements:
 - a) Na sodium
- b) Br bromine
- c) Hg mercury
- d) Fe iron
- e) Ag silver

- 13. Write the symbol for each of the following elements:
 - a) copper Cu
- b) lead Pb
- c) strontium Sr
- d) silicon Si
- e) tin Sn
- 15. Determine the number of moles of atoms that are present in each of the following samples:
 - a) 5.0 g K

$$5.0 \text{ g K} \times \frac{1 \text{ mol K}}{39.1 \text{ g K}} = 0.13 \text{ mol K}$$

- b) 17 g Mg
- $17 \text{ g Mg} \times \frac{1 \text{ mol Mg}}{24.3 \text{ g Mg}} = 0.70 \text{ mol Mg}$
- c) 3.0 g C
- $3.0 \text{ g C} \times \frac{1 \text{ mol C}}{12.0 \text{ g C}} = 0.25 \text{ mol C}$
- d) 2.2 kg Fe
- $2.2 \text{ kg Fe} \times \frac{1000 \text{ g Fe}}{1 \text{ kg Fe}} \times \frac{1 \text{ mol Fe}}{55.85 \text{ g Fe}} = 39 \text{ mol Fe}$
- 14 mg Ag
- 14 mg Ag $\times \frac{1 \text{ g Ag}}{1000 \text{ mg Ag}} \times \frac{1 \text{ mol Ag}}{108 \text{ Ag}} = 1.3 \times 10^{-4} \text{ mol}$
- 17. How many moles of molecules are in a 10.0-g sample of each of the following compounds? How many moles of atoms are in each sample?
 - $10.0 \text{ g} \times \frac{1 \text{ mol SF}_6}{146 \text{ g}} = 0.0685 \text{ mol SF}_6$; $0.0685 \text{ mol SF}_6 \times \frac{7 \text{ mol atoms}}{1 \text{ mol SF}_6} = 0.480 \text{ mol atoms}$ SF₆
 - CCl_4 10.0 g× $\frac{1 \text{ mol } CCl_4}{154 \text{ g}}$ = 0.0649 mol CCl_4 ; 0.0649 mol CCl_4 × $\frac{5 \text{ mol atoms}}{1 \text{ mol } CCl_4}$ = 0.325 mol atoms
 - c) $C_6H_{14} = 10.0 \text{ g} \times \frac{1 \text{ mol } C_6H_{14}}{86.2 \text{ g}} = 0.116 \text{ mol } C_6H_{14}; = 0.116 \text{ mol } C_6H_{14} \times \frac{20 \text{ mol atoms}}{1 \text{ mol } C_6H_{14}} = 2.32 \text{ mol atoms}$

Early Experiments

d)
$$SO_3$$
 $10.0 \text{ g} \times \frac{1 \text{ mol } SO_3}{80.0 \text{ g}} = 0.125 \text{ mol } SO_3;$ $0.125 \text{ mol } SO_3 \times \frac{4 \text{ mol atoms}}{1 \text{ mol } SO_3} = 0.500 \text{ mol atoms}$

e)
$$BF_3$$
 10.0 g× $\frac{1 \text{ mol BF}_3}{67.8 \text{ g}}$ = 0.148 mol BF $_3$; 0.148 mol BF $_3$ × $\frac{4 \text{ mol atoms}}{1 \text{ mol BF}_3}$ = 0.590 mol atoms

- 19. Determine the mass of the following samples.
 - a) 2.5 mol CaCl₂

2.5 mol
$$CaCl_2 \times \frac{111 \text{ g}}{1 \text{ mol } CaCl_2} = 2.8 \times 10^2 \text{g} = 0.28 \text{ kg}$$

b) 0.75 mol C₆H₁₂

0.75 mol
$$C_6H_{12} \times \frac{84 \text{ g}}{1 \text{ mol } C_6H_{12}} = 63 \text{ g}$$

c) 1.8 mol CO₂

- 1.8 mol $CO_2 \times \frac{44 \text{ g}}{1 \text{ mol } CO_2} = 79 \text{ g}$
- 21. Consider a 5.00-g sample of Ca₂S₃.
 - a) How many moles of Ca₂S₃ does it contain?

$$M_m = (2 \text{ mol Cal})(40.0 \text{ g/mol}) + (3 \text{ mol S})(32.0 \text{ g/mol}) = 176 \text{ g/mol}$$

 $n = 5.00 \text{ g Ca}_2 S_3 \times \frac{1 \text{ mol Ca}_2 S_3}{176 \text{ g Ca}_2 S_3} = 0.0284 \text{ mol Ca}_2 S_3$

b) How many moles of sulfur does it contain?

$$0.0284 \text{ mol } \text{Ca}_2\text{S}_3 \times \frac{3 \text{ mol } \text{S}}{1 \text{ mol } \text{Ca}_2\text{S}_3} = 0.0852 \text{ mol } \text{S}$$

c) How many grams of sulfur does it contain?

$$0.0852 \text{ mol S} \times \frac{32.0 \text{ g S}}{\text{mol S}} = 2.73 \text{ g S}$$

23. Balance the following equations using the smallest integer coefficients:

a)
$$N_2 + H_2 \rightarrow NH_3$$

$$N_2 + 3H_2 \rightarrow 2NH_3$$

b)
$$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$$

$$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$$

c)
$$Al + O_2 \rightarrow Al_2O_3$$

$$4AI + 3O_2 \rightarrow 2AI_2O_3$$

d)
$$CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$$

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$$

e)
$$P_4O_{10} + H_2O \rightarrow H_3PO_4$$

f) $Ca + O_2 \rightarrow CaO$

$$2Ca + O_2 \rightarrow 2CaO$$

 $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$

- 25. Consider the reaction of 0.30 mol K with O_2 , $4K + O_2 \rightarrow 2K_2O$
 - a) How many moles of molecular oxygen are required?

0.30 mol K
$$\times \frac{1 \text{ mol } O_2}{4 \text{ mol K}} = 0.075 \text{ mol } O_2$$

$$0.30 \text{ mol K} \times \frac{2 \text{ mol K}_2 \text{O}}{4 \text{ mol K}} = 0.15 \text{ mol K}_2 \text{O}$$

c) What mass, in grams, of potassium oxide would form?

$$M_{m} = 2 \text{ mol } K \times 39.1 \text{ g/mol} + 1 \text{ mol } O \times 16.0 \text{ g/mol} = 94.2 \text{ g/mol}$$

$$0.15 \text{ mol } \text{K}_2\text{O} \times \frac{94.2 \text{ g K}_2\text{O}}{\text{mol K}_2\text{O}} = 14 \text{ g K}_2\text{O}$$

- 27. The green molecules (G₂) react with the blue molecules (B₂) to form molecules of G₃B in the container shown in the text. Each circle represents one mole of the atom, and the atomic masses of G and B are 10 and 30, respectively.
 - a) How many grams of G_2 and B_2 are in the container?

The molar mass of $G_2 = 2(10) = 20$ g/mol. There are 6 mol, so the mass of G_2 is (6 mol)(20 g/mol) = 120 g. The molar mass of $B_2 = 2(30) = 60$ g/mol. There are 3 mol, so the mass of B_2 is (3 mol)(60 g/mol) = 180 g.

b) How many G₃B molecules can be produced?

There are 6 mol G_2 or 12 mol G atoms, which is enough to produce 4 mol G_3B molecules. There are 6 mol G_3B atoms, which is enough to proude 6 mol of G_3B molecules. Thus G_2 is the limiting reactant and only 4 mol G_3B can be produced.

c) What is the balanced chemical equation for the reaction?

 $3G_2 + B_2 \rightarrow 2G_3B$

d) How many grams of G₃B would be produced?

The molar mass of G_3B is 3(10) + 30 = 60 g/mol. In part b, we saw that 4 mol is produced, so the mass is $(4 \text{ mol})(60 \text{ g/mol}) = 240 \text{ g } G_3B$

e) What mass of G₂ or B₂ molecules would be left over?

 G_2 is the limiting reactant, so no G_2 remains. Use the balanced equation to determine how many moles of B_2 would react with 6 mol G_2 .

$$6 \text{ mol } G_2 \times \frac{1 \text{ mol } B_2}{3 \text{ mol } G_2} = 2 \text{ mol } B_2 \text{ react}$$
, so $3 - 2 = 1 \text{ mol remains or } 60 \text{ g } B_2 \text{ remains.}$

Note that conservation of mass is obeyed:

initial mass = 120 g G_2 + 180 g B_2 = 300 g; final mass = 240 g G_3B + 60 g B_2 = 300 g.

- 29. Consider the reaction of 6 mol Fe and 6 mol O2 to produce Fe3O4.
 - a) Write the balanced chemical equation.

$$3Fe + 2O_2 \rightarrow Fe_3O_4$$

b) How many moles of Fe₃O₄ could be produced?

$$6 \, \text{mol} \, \text{Fe} \times \frac{1 \, \text{mol} \, \text{Fe}_3 \text{O}_4}{3 \, \text{mol} \, \text{Fe}} \ = 2 \, \text{mol} \, \text{Fe}_3 \text{O}_4; \ 6 \, \text{mol} \, \text{O}_2 \times \frac{1 \, \text{mol} \, \text{Fe}_3 \text{O}_4}{2 \, \text{mol} \, \text{O}_2} = 3 \, \text{mol} \, \text{Fe}_3 \text{O}_4$$

Less can be made from Fe, so it is the limiting reactant and 2 mol Fe₃O₄ can be produced.

c) How many moles of excess reactant remain after the reaction is done?

Determine how much O_2 is needed to react with the Fe: $6 \text{ mol Fe} \times \frac{2 \text{ mol } O_2}{3 \text{ mol Fe}} = 4 \text{ mol } O_2 \text{ react}$

There were 6 mol O₂ initially and 4 mol react, so 2 mol O₂ is left over.

31. Use Coulomb's law to explain why Na¹⁺ ions and the Cl¹⁻ ions exist as separated ions in liquid water ($\varepsilon = 79$) but pair together as uncharged NaCl units in liquid carbon tetrachloride ($\varepsilon = 2$).

The force of attraction between the opposite charges is given by Coulomb's law to be $F \propto \frac{(+1)(-1)}{cr^2}$. The greater

the force of attraction, the more likely it is that the charges will pair. The value of e in water is about 40 times greater than in carbon tetrachloride. This means that the ions are 40 times more likely to pair in carbon tetrachloride than in water, or that the distance between the ions in carbon tetrachloride must be $\sqrt{40} \sim 6$ times greater than in water to experience the same force of attraction.

33. What is the charge in coulombs of a mole of electrons? (This amount of charge is called a Faraday.) The charge of an electron from Table 1.1 is -1.6×10^{-19} C

$$-\frac{1.6\times10^{-19} \text{ C}}{\text{electron}}\times\frac{6.0\times10^{23} \text{ electrons}}{\text{mol electrons}} = -9.6\times10^4 \text{ C/mol}$$

35. List the following systems of charged particles from most negative to most positive energies of interaction. Also list the forces from most attractive to most repulsive.

Use Equations 1.3 and 1.4, but we need only relative values. Therefore, k and ε can be ignored because they are constant. The charges are all multiples of the fundamental charge (1.6x10⁻¹⁹ C) and can be used without conversion. Finallly, all r values have the same units, so they do not have to be converted to meters.

- a) +2 and +2 charges separated by 10 nm $F_a \propto (+2)(+2)/10^2 = +0.0400$ $E_a \propto (+2)(+2)/10 = +0.40$
- b) -2 and +3 charges separated by 11 nm $F_b \propto (-2)(+3)/11^2 = -0.0496$ $E_b \propto (-2)(+3)/11 = -0.545$
- c) +2 and +1 charges separated by 6 nm $F_c \propto (+2)(+1)/6^2 = +0.0556$ $E_c \propto (+2)(+1)/6 = +0.33$ Energy: most negative = E_b , E_c , E_a = most positive. Force: most attractive = F_b , F_a , F_c = most repulsive

Early Experiments

37. Why did not the oil droplets in Millikan's experiment all have the same charge? What did the charges all have in common?

The number of electrons that adhered to the droplet varied, so the charge on the droplets also varied. The observed charges were all multiples of one number, the charge on the electron.

39. The deflection of an X^{1+} ion in an electric field is 14% of that of an α -particle. What is the identity of X? An α -particle is 4 He $^{2+}$.

deflection of $X^{1+} = 0.14 \times deflection of ^4He^{2+}$. so

$$\left(\frac{q}{m}\right)_{X} = 0.14 \times \left(\frac{q}{m}\right)_{He} = 0.14 \times \frac{2}{4} = 0.0070$$

$$\frac{1}{m_X} = 0.070 \implies m_X = \frac{1}{0.070} = 14,$$

so X has an atomic mass of 14. Therefore, X is a nitrogen atom.

41. Use Figure 1.7 and the periodic law to determine the formulas of the oxides of the following elements:

a) **phosphorus** 2.5 O atoms for each P atom, so the formula is P_2O_5 .

b) arsenic As is in the same group as P, so the formula is predicted to be As_2O_5 by analogy.

c) selenium Se is in the same group as S, so there are two O atoms for each Se or SeO₂.

d) carbon Two oxygens per carbon yield a formula of CO₂.

e) cesium Cs is in the same family as Na and K, which combine with O in a 1:2 ratio, so the formula is Cs₂O.

43. Predict the following formulas based on periodic behavior.

a) the compound formed between Pb and Cl, given the formulas TlCl and BiCl₃

Pb falls between Tl and Bi on the periodic table so the number of chlorine atoms per lead atom is predicted to be between the 1:1 and 3:1 ratios of the given compounds. Consequently, the formula is PbCl₂

b) the compound formed between Sc and Br, given the formulas KBr and CaBr₂

Sc is after Ca so the Sc:Br ratio should be the one following the trend of 1:1 and 1:2. The formula should be ScBr₃.

45. Determine the number of protons, neutrons and electrons in each of the following:

	protons	neutrons	electrons
a) ${}^{16}O^{2}$	8	16 - 8 = 8	8 + 2 = 10
b) $^{27}Al^{3+}$	13	27 - 13 = 14	13 - 3 = 10
c) 25 Mg	12	25 -12 = 13	12 + 0 = 12
d) ¹⁹ F	9	19 - 9 = 10	9 + 0 = 9
e) ⁴⁸ Ti ⁴⁺	22	48 - 22 = 26	22 - 4 = 18
e) 207 Pb $^{2+}$	82	207 - 82 = 125	82 - 2 = 80

47. Write the symbol for the species with the number of protons (p) and electrons (e) shown below.

a)
$$34 p + 36 e = Se^{2}$$

b)
$$26 p + 23 e = Fe^{3+}$$

c)
$$47 p + 47 e = Ag$$

49. Distinguish between a group and a period. How are the properties of the elements in each related?

group (or family) - one of the vertical columns in the Periodic Table. Elements within a group exhibit similar chemical properties

<u>period</u> - one of the horizontal rows in the Periodic Table. As one progresses across the elements in a period, properties change gradually from one extreme to another.

51. Identify each of the following elements:

a) metalloid in the same family as galliumb) nonmetal in the same family as germaniumC

c) gas in the fifth period Xe

d) halogen in the same period as lead At
e) only metal in the same group as sulfur

53. Group the following elements in pairs that are likely to have similar chemical properties: Ca, S, Sr, He, O, Ar.

Elements in a family are similar: Ca & Sr (2A) S & O (6A) He & Ar (8A)