Solutions and Spectroscopy Worksheet

As you work through the steps in the lab procedures, record your experimental values and the results on this worksheet.

Part A: Determination of the Concentration of a Copper(II) Ion Solution

Complete the following table. (Enter concentrations to three significant figures.)

Data Table A: Calibration Curve of Cu²⁺ Solutions and Unknown

Stock Cu ²⁺	solution conc	entration	M			
Solution #	Target Volume of Cu ²⁺ , mL	Actual Volume of Cu ²⁺ , mL	$\begin{array}{c} {\rm Target} \\ {\rm Volume} \\ {\rm of} \ {\rm H_2O}, \\ {\rm mL} \end{array}$	Actual Volume of H ₂ O, mL	[Cu ²⁺], M (calculated)	Absorbance at \sim 620 nm (measured to 3 sf)
1	1.20		4.80			
2	2.40		3.60			
3	3.60		2.40			
4	4.80		1.20			
Equation of Trendline (to three significant figures): $y = \underline{\qquad} x + \underline{\qquad}$				$R^2 = \underline{\hspace{1cm}}$ (to three significant figures)		

Upload your graph as a file with a maximum size of 1 MB.

Would you predict the absorbance of Solution 2 to be greater or less than that of Solution 1?

What is the concentration of Cu^{2+} in your unknown solution? Record this concentration below. (*Hint:* Use the absorbance of the unknown and the trendline to solve for the Cu^{2+} concentration.)

Unknown #

Absorbance at 620 nm (measured)

[Cu²⁺] (calculated)

Part B: Preparation of a Copper(II) ion Solution from Solid CuSO₄ · 5 H₂O

You desire to make a copper(II) solution at the same concentration as the unknown you just determined in Part A. How many grams of $CuSO_4 \cdot 5 H_2O$ are required to make 25.00 mL of this solution? Record the result as the target mass in Data Table B. (Enter concentrations to three significant figures.)

Data Table B: Preparation of a Cu^{2+} Solution from solid $CuSO_4 \cdot 5 H_2O$

Target [Cu ²⁺] from Part A, M	Target Mass $CuSO_4 \cdot 5 H_2O$, g	Actual Mass $CuSO_4 \cdot 5 H_2O$, g	Absorbance of Cu ²⁺ solution at 620 nm	[Cu ²⁺] calculated from absorbance, M

that of the unknow	•	our solution made fr	om solid to be grea	ter than or less than
Why?				
Part C: Prepara Solution	tion of a Copper(II) Ion Solution b	y Dilution of a S	$tock \ CuSO_4$
in Part A. How ma	any mL of the copp the result as the targ	n at the same concerer(II) stock solution get volume in Data	are required to ma	ake 25.00 mL of this
Table C: Prepara	tion of a Cu ²⁺ Solut	tion from stock Cu ²⁺	solution	
Stock Cu ²⁺ solut	ion concentration	T	M	I
Target [Cu ²⁺] from Part A, M	Target Volume Cu ²⁺ solution, mL	Actual Volume Cu ²⁺ solution, mL	Absorbance of Cu ²⁺ solution at 620 nm	[Cu ²⁺] calculated from absorbance, M
Would you predict than that of the un	=	our solution made fr	om a dilution to be	greater than or less
Why?				