
Section 3.1
Introduction to Derivatives Rules

Introduction

Objective 3.1.1 Use the Power Rule to compute the derivative of a function.

Objective 3.1.2 Use the Constant Rule to compute the derivative of a function.

Objective 3.1.3 Compute the derivative of a polynomial.

Objective 3.1.4 Find where the tangent lines of a polynomial are horizontal .

Objective 3.1.5 Given the equation of a polynomial, use the rules of differentiation to determine
where the function is increasing, decreasing, concave up, concave down, or has a given slope.

Objective 3.1.6 Find the derivative of a function of the form

y =
p(x)

q(x)

where p and q are polynomials with the degree of q less than or equal to the degree of p, by dividing
then using the power rule.
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Derivative of a constant

The graph of a constant function, f(x) = c, is a horizontal line; therefore, the derivative equals
zero. The slope of all horizontal lines equals zero.

Theorem: If c is any real number then
d

dx
(c) = 0

Derivative of a non-vertical line.

The function f(x) = cx, is a line with slope equal to c for each x. Therefore, the derivative of the
function f(x) = cx, is c.

Theorem: If c is any real number then
d

dx
(cx) = c

Derivative of a power function.

Recall: A power function is a function of the form f(x) = axn, where n is a natural number.

Let us first consider the power function f(x) = x4. By using the definition of the derivative to
compute f ′(x) we see the following.

f ′(x) = lim
h→0

(x + h)4 − x4

h

= lim
h→0

6 x4 + 4x3h + 6x2h2 + 4xh3 + h4− 6 x4

h

= lim
h→0

h(4x3 + 6x2h + 4xh2 + h3)

h
(h 6= 0)

= lim
h→0

6 h(4x3 + 6x2h + 4xh2 + h3)

6 h

= lim
h→0

(4x3 + 6x2h + 4xh2 + h3)

= 4x3

We can now see that,

d(x4)

dx
= 4 · x4−1 = 4x3
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Theorem (Power Rule): Given the power functionf(x) = xn where n is a natural number,

d(xn)

dx
= n · xn−1

Proof:

d

dx
[xn] = lim

h→0

f(x + h)− f(x)

h

= lim
h→0

(x + h)n − xn

h
(Note: We will use the binomial expansion to multiply)

= lim
h→0

[xn + nxn−1h + n(n−1)
2! xn−2h2 + · · ·+ nxhn−1 + hn]− xn

h

= lim
h→0

nxn−1h + n(n−1)
2! xn−2h2 + · · ·+ nxhn−1 + hn

h

= lim
h→0

[nxn−1 +
n(n− 1)

2!
xn−2h + · · ·+ nxhn−2 + hn−1]

= nxn−1 + 0 + 0 + · · ·+ 0 + 0

= nxn−1

Theorem (Power Rule for real number powers):Given the functionf(x) = xr where r is a
real number,

d(xr)

dx
= r · xr−1

We will leave this proof for later.

Example 3.1.1

Let’s look at using th empower rule when the exponent is a negative number. You can verify
that it is true by using the limit definition.

If f(x) =
1

x
, find f ′(x).

Answer:

f(x) =
1

x
= x−1 ⇒ f ′(x) = −1(x−2) = − 1

x2

Derivative of a constant times a function

Theorem: (Constant Multiple Rule) Let c be a real number and y = f(x) a function of x. If
f is differentiable at x and y = c · f(x) then

dy

dx
=

d

dx
(c · f(x)) = c · d

dx
f(x).
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Example 3.1.2

Find the derivatives of the following:

a.) y = 11x5

Answer: y′ = 11(5x4) = 55x4

b.) y = x3

Answer: dy
dx = 3x2

c.) y = x2

Answer: dy
dx = 2x

d.) y =
√
x

Answer: dy
dx = 1

2x
−1/2 = 1

2
√
x

e.) f(x) = 4x−6

Answer: f ′(x) = 4(−6x−7) = −24
x7

Each of the above examples (especially parts b, c, and d) can be easily verified using the limit
definition of the derivative. For additional practice, try to verify them on your own.
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Derivatives of the sum and difference of functions

Theorem: Sum/Difference Rule The derivative of the sum (respectively difference) of functions
is the sum (respectively difference) of the derivatives:

If y = f(x)± g(x), then y′ = f ′(x)± g′(x).

The proof is left as an exercise.

Example 3.1.3

Let f(x) = x5 + 17x3 + 1
3

3
√
x− 5

x2
+ 4. Find f ′(x).

Answer: We can look at this in parts.

function derivative

x5 5x4

17x3 117x2

1
3

3
√
x 1

9x
−2/3

− 5

x2
−10

x3

4 0

Therefore, we add the pieces together and get

f ′(x) = 5x4 + 117x2 +
1

9
x−2/3 − 10

x3
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Example 3.1.4

Let f(x) = 5− 6x2 − 2x3. Find the point(s) where the tangent lines are HORIZONTAL.

Answer:
Note mtan = f ′(x) = −12x− 6x2 = −6x(2 + x), so f ′(x) = 0 when x = 0 and x = −2. Therefore,
the points where the tangent lines are horizontal are

(0, f(0)) = (0, 5) and (−2, f(−2)) = (−2,−3).
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Section 3.2
Derivatives of Exponential
Functions

Introduction

Objective 3.2.1 Differentiate a function of the form f(x) = ax.

Objective 3.2.2 Determine the derivative of f(x) = ex.

Objective 3.2.3 Given the equation of a function with exponential terms, use the rules of differ-
entiation to determine where the function is increasing, decreasing, concave up, concave down, or
has a given slope.

Objective 3.2.4 Find the equation of a tangent line for a function f that includes a natural
exponential function in its definition.
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Let a > 0 be a real number and a 6= 1. To find the derivative of f(x) = ax we will start with the
limit definition of the derivative.

f ′(x) = lim
h→0

ax+h − ax

h
Definition of Derivative

= lim
h→0

axah − ax

h
Rules of Exponents

= lim
h→0

ax
(
ah − 1

h

)
factor ax.

= ax
[

lim
h→0

(
ah − 1

h

)]
limit rules.

It turns out that evaluating the limit rigorously is not such an easy thing to do. We will need a
technique from a later section to evaluate the limit for any value of a.

By calculating an approximation to each of the following limits numerically, we see that

if a = 2, lim
h→0

2h − 1

h
≈ 0.693, and ifa = 3 lim

h→0

3h − 1

h
≈ 1.099

The limit depends on what the base a is. It follows that there is a number between 2 and 3 where
the limit equals 1. It turns out that the irrational number e is that number. Note: we will verify
these limits in a later section. For now, e is defined as follows:

Definition: e is the real number such that limh→0

(
eh−1
h

)
= 1

We can now find the derivative of the natural exponential function, f(x) = ex as follows.

f ′(x) = lim
h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex
(
eh − 1

h

)
= ex(1)

= ex

Using the limit definition and the definition of e, we get d
dx(ex) = ex. Note: y = ex is the only

exponential function that is its own derivative.
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Example 3.2.1

Given the function y = x3 + x + 5ex. Find where it is increasing.

Answer: Recall, when the function is increasing the graph of the derivative of the function is
above the x-axis. Therefore, we will look at the derivative to determine where it is positive.
dy
dx = 3x2 + 1 + 5ex We will need to solve the inequality, 3x2 + 1 + 5ex > 0 to find where y is

increasing. Notice, 3x2 ≥ 0 for every real number x, which implies that 3x2 + 1 > 0 for every real
number x. Also, 5ex > 0. Thus, 3x2 + 1 + 5ex > 0 for every real number x. Thus, y = x3 + x+ 5ex

is always increasing for all real numbers.

Example 3.2.2

Differentiate the function y = 4ex − 7√
x

.

Answer: First we will rewrite the function so we can use the power rule on the second term.

y = 4ex − 7x−
1
2

Now we will find the derivative and simplify.

dy

dx
= 4ex − 7(

1

2
)x(−

1
2
−1)

= 4ex − 7

2
x−

3
2

= 4ex − 7

2x
√
x

Example 3.2.3

Differentiate the function y = Ax3 + Bex.

Answer: A and B are constants with respect to x, therefore, we treat them the same as we would
any real number when finding the derivative.

dy

dx
= A(3)x3−1 + Bex = 3Ax2 + Bex
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Example 3.2.4

Find the equation of the tangent line to the graph of the function f(x) = 5ex + x2 at x = 0.

Answer: First we will find the slope of the tangent line by finding the derivative function then
evaluate it at x = 0.

f ′(x) = 5ex + 2x, evaluated at x = 0 is f ′(0) = 5e0 + 2(0) = 5

To write the equation of the tangent line, we must first find the point that is on the graph at x = 0.
f(0) = 5, so the point at which you want to find the equation of the tangent line is (0, 5) and the
slope of the tangent line is mTAN = f ′(0) = 5. Using the point and slope we find

y − 5 = 5(x− 0) which simplifies to the equation y = 5x + 5
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Section 3.3
Product and Quotient Rules

Introduction

Objective 3.3.1 Derive and state the Product Rule.

Objective 3.3.2 Use the Product Rule to compute the derivative of a function.

Objective 3.3.3 Derive and state the Quotient Rule.

Objective 3.3.4 Use the Quotient Rule to compute the derivative of a function.

Objective 3.3.5 Differentiate a function that contains arbitrary constants.

Objective 3.3.6 Write the equation of a tangent line of a function that is a product or quotient
of two or more functions.
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Our goal in this section is to determine how to differentiate functions that are the product or
quotient of other functions.

The Product Rule

Defining a rule that will allow us to find the derivative of the product of functions is, unfortunately,
not as straight forward as the finding the sum or difference of of functions. We might guess that
the derivative of the product is obtained by multiplying the derivatives of the individual derivatives
of the factors, but that is not the case. For example, if we let f(x) = x and g(x) = x2, then
(fg)(x) = x3. Then (fg)′(x) = 3x2 by the power rule; however, f ′(x)g′(x) = (1)(x2) = x2. Our
initial guess is incorrect. The proper way to differentiate a product is given in the following formula.

Theorem (Product Rule) If f and g are differentiable at x, then (fg) is also differentiable at x
and

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] + g(x)

d

dx
[f(x)]

Proof: We will use the definition of the derivative to show the product rule is true.

d

dx
[f(x)g(x)] = lim

h→0

f(x + h)g(x + h)− f(x)g(x)

h

= lim
h→0

f(x + h)g(x + h)− f(x + h)g(x) + f(x + h)g(x)− f(x)g(x)

h

= lim
h→0

f(x + h) · g(x + h)− g(x)

h
+ lim

h→0
g(x) · f(x + h)− f(x)

h

= [lim
h→0

f(x + h)] · d

dx
[g(x)] + [ lim

h→0
g(x)] · d

dx
[f(x)]

= f(x) · d

dx
[g(x)] + g(x) · d

dx
[f(x)]

Note: f(x + h) → f(x) because f is continuous at x. g(x) → g(x) as h → 0 because g does not
involve h and is therefore treated as a constant.
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Now let us see a few examples involving differentiating the product of functions.

Example 3.3.1

Let f(x) = (x + 4)(3x− 5). Find f ′(x).

Answer:
First using the Product Rule:

f ′(x) = (x + 4)
d

dx
[(3x− 5)] + (3x− 5)

d

dx
[(x + 4)] = (x + 4)(3) + (3x− 5)(1) = 6x + 7.

We can check this by expanding and using the power and constant rules:

f(x) = (x + 4)(3x− 5) = 3x2 + 7x− 20⇒ f ′(x) = 6x + 7.

Example 3.3.2

Given f(x) = x2 · ex, find f ′(x).

Answer:

f ′(x) = x2
d

dx
[ex] + ex

d

dx
[x2] = x2ex + 2xex = xex[x + 2]

Example 3.3.3

Given F (x) = f(x) · g(x) · h(x). Derive the product rule for these three terms.

Answer: Rewrite F (x) as F (x) = [f(x)g(x)]h(x). Then

F ′(x) = [f(x)g(x)]h′(x) + [f(x)g(x)]′h(x)

Noting that
[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x),

we have
F ′(x) = f(x)g(x)h′(x) + f(x)g′(x)h(x) + f ′(x)g(x)h(x)
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The Quotient Rule

The derivative of a product of functions is not the product of the derivatives. Similarly, the deriva-
tive of a quotient of functions is not the quotient of the derivatives.

Theorem (Quotient Rule) If f and g are differentiable at x and g(x) 6= 0, then f
g is also differen-

tiable at x and

d

dx

[
f(x)

g(x)

]
=

g(x) d
dx [f(x)]− f(x) d

dx [g(x)]

[g(x)]2

Proof: We will use the definition of the derivative to show the quotient rule is true.

d

dx

[
f(x)

g(x)

]
= lim

h→0

 f(x+h)
g(x+h) −

f(x)
g(x)

h


= lim

h→0

f(x + h) · g(x)− f(x) · g(x + h)

h · g(x) · g(x + h)

= lim
h→0

f(x + h) · g(x)− f(x) · g(x)− f(x) · g(x + h) + f(x) · g(x)

h · g(x) · g(x + h)

= lim
h→0

[
g(x) · f(x + h)− f(x)

h

]
−
[
f(x) · g(x + h)− g(x)

h

]
g(x) · g(x + h)

=

[
limh→0 g(x) · limh→0

f(x + h)− f(x)

h

]
−
[
limh→0 f(x) · limh→0

g(x + h)− g(x)

h

]
limh→0 g(x) · limh→0 g(x + h)

=
[limh→0 g(x)] · d

dx [f(x)]− [limh→0 f(x)] · d
dx [g(x)]

limh→0 g(x) · limh→0 g(x + h)

=
g(x) · d

dx [f(x)]− f(x) · d
dx [g(x)]

g(x) · g(x)

=
g(x) · d

dx [f(x)]− f(x) · d
dx [g(x)]

[g(x)]2

Note: In the third step above, I added and subtracted f(x) · g(x) in the numerator. To understand
how I evaluated the limits in the next to the last step, see the comments at the end of the proof
for the product rule.
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Now let us see a few examples involving differentiating the quotient of functions and all other rules
you have seen thus far.

Example 3.3.4

Given h(x) =
x + 4

3x− 5
, use the quotient rule to find h′(x).

Answer: If we think of h(x) as the quotient of the two functions, f(x) = x+ 4 and g(x) = 3x− 5
we see that h′(x) can be computed as follows.

h′(x) =
d

dx

[
f(x)

g(x)

]
=

g(x) d
dx [f(x)]− f(x) d

dx [g(x)]

[g(x)]2

=
[3x− 5] · [1]− [x + 4] · [3]

[3x− 5]2

=
3x− 5− [3x + 12]

[3x− 5]2

=
−17

(3x− 5)2

Calculus I 5 c©2014-16 Brenda Burns-Williams and Elizabeth Dempster

Last update: September 18, 2014

Calculus I 5 c©2014-16 Brenda Burns-Williams and Elizabeth Dempster

Last update: September 18, 2014

Calculus I 5 c©2014-16 Brenda Burns-Williams and Elizabeth Dempster

Last update: September 18, 2014



Example 3.3.5

In each of the following, A new function is expressed in terms of f(x) and g(x). Given that
f(3) = −1, g(3) = 4, f ′(3) = 2 ,g′(3) = −7,

a.) if F (x) = f(x) · g(x), find F ′(3).

b.) if H(x) =
f(x)

g(x)
, find H ′(3).

Answer:

a.)

F ′(3) =
d

dx
[f(3) · g(3)]

= f(3) · g′(3) + g(3) · f ′(3)

= (−1)(−7) + (4)(2)

= 15

b.)

H ′(3) =
d

dx

[
f(3)

g(3)

]
=

g(3) · f ′(3)− f(x) · g′(3)

[g(3)]2

=
[(4)(2)]− [(−1)(−7)]

[4]2

=
1

16
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Example 3.3.6

Find the equation of the tangent line to the function f(x) =
ex

1 + x2
at the point p =

(
1,

e

2

)
.

Answer:
The derivative of f(x) is

f ′(x) =
(1 + x2)(ex)− ex(2x)

(1 + x2)2
=

ex(x2 − 2x + 1)

(x2 + 1)2
.

Plugging in the x-value of p yields the slope of the function at that point, namely, f ′(1) = 0. Thus
the equation of the tangent line is a constant function. The value of this constant is the y-value of
p, namely e

2 . The equation of the tangent line to the function is t(x) = e
2 .
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Example 3.3.7

Given f(x) =
x + 4

3x− 5

a.) find f ′(x).

b.) What does f ′(x) tell us about the graph of f?

Answer:

a.)

f ′(x) =
−(3x− 5) d

dx(x + 4)− (x + 4) d
dx(3x− 5)

(3x− 5)2

=
−(3x− 5)(1)− (x + 4)(3)

(3x− 5)2

=
−17

(3x− 5)2

b.) The derivative is always negative because the numerator is negative and the denominator is
always positive. Therefore we know that f will be decreasing on it’s whole domain.
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Section 3.4
Derivatives of Trigonometric
Functions

Introduction

Objective 3.4.1 Use the limit definition of the derivative to find the derivatives of y = sinx,
y = cosx, and y = tanx.

Objective 3.4.2 State the derivative of the basic trig functions: y = sinx and y = cosx.

Objective 3.4.3 Using the definitions of the trig functions and the product and quotient rules,
derive the derivatives of the other four trig functions, y = tanx, y = secx, y = cscx, and y = cotx.
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Next we will find the value of limθ→0
1− cos θ

θ

By the half-angle formula,

sin2(
θ

2
) =

1− cos θ

2

Therefore,

1− cos θ

θ
=

2 sin2(
θ

2
)

θ
=

2 sin2(
θ

2
)

θ

2

Now let z =
θ

2
. Since z → 0 as θ → 0

lim
θ→0

1− cos θ

θ
= lim

θ→0

sin2( θ2)
θ
2

= lim
z→0

sin2(z)

z

= lim
z→0

[(sin z)
sin z

z
]

= lim
z→0

[(sin z)] · lim
z→0

[
sin z

z
]

= (0)(1)

= 0
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Now we are ready to find the derivative of f(x) = sinx.

f ′(x) = limh→0
sin(x+ h)− sin(x)

h

= limh→0
sinx cosh+ cosx sinh− sinx

h

= limh→0
sinx cosh− sinx

h
+

cosx sinh

h

= limh→0
sinx(cosh− 1)

h
+ limh→0

cosx sinh

h

= sinx limh→0
(cosh− 1)

h
+ cosx limh→0

sinh

h

= −(sinx) limh→ 0
(1− cosh)

h
+ cosx limh→0

sinh

h

= −(sinx)(0) + (cosx)(1)

= cosx
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Givenf(x) = cosx, we will find f ′(x) algebraically using the definition of the derivative.

f ′(x) = limh→0
cos(x+ h)− cos(x)

h

= limh→0
cosx cosh− sinx sinh− cosx

h

= limh→0
cosx cosh− cosx

h
− sinx sinh

h

= limh→0
cosx(cosh− 1)

h
− limh→0

sinx sinh

h

= cosx limh→0
(cosh− 1)

h
− sinx limh→0

sinh

h

= (cosx)(0)− (sinx)(1)

= − sinx
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Example 3.4.1

Given the graph of f(x) = cosx, graph f ′(x) to verify that your formula for f ′(x) from above
is correct. In other words, check that where f(x) is increasing, f ′(x) is positive and where f(x) is
decreasing, f ′(x) is negative.

Answer: First we identify the places where f ′(x) = 0, and then we can sketch in the rest of its
graph using the slope of f(x):
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We will determine the derivatives of the remaining trig functions by rewriting each of them in terms
of sine and cosine and using the Quotient Rule.

In order to find the derivative of f(x) = tanx, we need to rewrite it as f(x) =
sinx

cosx
.

Starting with f(x) = tanx =
sinx

cosx
, we apply the quotient rule:

f ′(x) =
cosx d

dx(sinx)− sinx d
dx(cosx)

cos2 x

=
cosx cosx− sinx(− sinx)

cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x

= sec2 x

Note that the fact that the derivative of f(x) = tanx is squared means that the slope of tangent
is always greater than or equal to zero. Therefore, the tangent function is always increasing from
left to right.

Similarly, it can be shown that d
dx(cotx) = − csc2 x. This problem is left as an exercise.
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Find the derivative of f(x) = secx by rewriting it in terms of cosx.

Answer: Staring with f(x) = secx =
1

cosx
, we apply the quotient rule:

f ′(x) =
(cosx) d

dx(1)− (1) d
dx(cosx)

cos2 x

=
0− (− sinx)

cos2 x

=
sinx

cos2 x

=
sinx

cosx
· 1

cosx

= secx tanx

Similarly it can be shown that if f(x) = cscx, then f ′(x) = − cotx cscx. This problem is left as
an exercise.

In summary, the derivatives of all 6 trig functions are as follows:

a.) d
dx(sinx) = cosx

b.) d
dx(cosx) = − sinx

c.) d
dx(secx) = tanx secx

d.) d
dx(cscx) = − cotx cscx

e.) d
dx(tanx) = sec2 x

f.) d
dx(cotx) = csc2 x
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Now let us do some examples using the new rules for trigonometric functions along with all of the
derivative rules we have learned so far.

Example 3.4.2

If y = x2 cos(x), what is dy
dx?

Answer:

We must use the product rule and the rule for finding the derivative of y = cosx:

dy

dx
= x2

d

dx
[cos(x)] +

d

dx
[x2] cos(x)

= −x2 sin(x) + 2x cos(x)

= x[2 cos(x)− x sin(x)]

Example 3.4.3

If f(x) =
sec(x)

1 + tan(x)
, for what values of x does the graph of f(x) have a horizontal tangent line?

Answer:

f ′(x) =
(1 + tan(x)) d

dx [sec(x)]− sec(x) d
dx [1 + tan(x)]

(1 + tan(x))2

=
(1 + tan(x))(tan(x) sec(x))− sec(x)(1 + sec2(x))

(1 + tan(x))2

=
sec(x)[tan(x) + tan2(x)− (1 + tan2(x))]

(1 + tan(x))2

=
sec(x)[tan(x)− 1]

(1 + tan(x))2

Setting this equation equal to zero yields sec(x) = 0 and tan(x) = 1. Notice that there is no
solution to sec(x) = 0. Places where f ′(x) = 0 are where tanx = 1 which implies that sinx

cosx = 1;
therefore, sin(x) = cos(x), namely when x = π

4 + πn for n an integer.
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Section 3.5
Differentiating Composite
Functions

Introduction

Objective 3.5.1 State the chain rule.

Objective 3.5.2 Use the chain rule to find the derivative of a function that is the composition of
two other functions.

Objective 3.5.3 Use the chain rule to find the derivative of a function that is the composition of
three or more functions.

Objective 3.5.4 Use the chain rule to find the equations of lines that are tangent to parametric
curves.

Objective 3.5.5 State the derivative of y = ax for any a > 0, a 6= 1.
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When we want to take the derivative of a function like y = (3x+ 4)2, we can do one of two things.

Method 1 We can expand the function by multiplying, to get

y = 9x2 + 24x + 16

Then we can find y′.
y = 18x + 24

As you might imagine, the larger the exponent the less willing we will be to expand the function
before finding the derivative.

Method 2 We can use the Chain Rule. The Chain Rule is the technique we will use to find
derivatives of functions that are the composition of other functions. It is a technique that will work
in situations in which Method I will not work or is too cumbersome. For example, we have no
way to expand g(x) =

√
x + 4 as we did in the case of the polynomial function above; therefore we

cannot use Method I to determine g′. We might also note that none of the other methods we have
previously discussed will allow us to compute g′. So let’s consider this problem in a different way.

y = (3x + 4)2

can be written as

y = u2 where u = 3x + 4

Then.
dy

du
= 2u

du

dx
= 3

We find the derivative by multiplying.

dy

dx
=

dy

du
· du
dx

Apply the Chain Rule

= (2u)(3)

= 2(3x + 4) · (3) Always put back in terms of the variable front the original problem.

= 18x + 24

We will not state a formal proof of the Chain Rule, as it is a bit beyond the scope of this class.
For now, we can see that both methods lead to the same answer. Let’s discuss the Chain Rule as
it applies to rates of change. Assume that we express our composition as y in terms of u and u is
in terms of x. If we know that y changes 4 times as fast as u and u changes 2 times as fast as x,
then we can predict that y will change (4) · (2) = 8 times as fast at x. So another way to think of
the derivative of the composition is as the product of the derivatives.
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The Chain Rule is presented below using different types of notation.

1. If y = f(u) is differentiable at u = f(x) and u is differentiable at x, then

dy

dx
=

dy

du
· du
dx

2. If g is differentiable at x and f is differentiable at g(x), then F = (f ◦ g) is differentiable at x.

F ′(x) = f ′(g(x)) · g′(x)

3. If f and g are differentiable, then f ◦ g is differentiable.

f ′ = f ′(g) · g′

4. In words: The derivative of the composition of two functions is the derivative of the outside
function evaluated at the inside function times the derivative of the inside function.

Let us consider examples where we are using the Chain Rule.

Example 3.5.1

Use the chain rule to find dy
dx for y =

√
x2 + x− 3.

Answer: E xpress the composition in terms of u and y and x..

Let u = x2 + x− 3. Then y =
√
u.

First we will find the derivative of y (the outside function) and the derivative of u (the inside
function)

dy

du
=

1

2
√
u

du

dx
= 2x + 1

Then we will substitute into the formula of the chain rule in 1 above.

Thus,
dy

dx
=

dy

du
· du
dx

=
1

2
√
u
· (2x + 1)

Our final step is to replace u.

1

2
√
u
· (2x + 1) =

2x + 1

2
√
x2 + x− 3
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Finally , we see
dy

dx
=

2x + 1

2
√
x2 + x− 3

Example 3.5.2

Use the chain rule to find dy
dx for y = (x4 + x + 1)55.

Answer: E xpress the composition in terms of u and y.

Let u = x4 + x + 1. Then y = u55, so
Find the derivative of y (the outside function) and the derivative of u (the inside function)
.

dy

du
= 55u54

du

dx
= 4x3 + 1

Then we will substitute into the formula of the chain rule in 1 above and replace u.

dy

dx
=

dy

du
· du
dx

= 55u54 · (4x3 + 1) = 55(x4 + x + 1)54(4x3 + 1)

Example 3.5.3

For y =

(
x− 1

2x + 3

)5

, find
dy

dx
.

Answer: I n this example we will use the same notation as above, but we will find the derivatives as

we go along. We will only use the variable u as a placeholder; it will not appear in the computations.

Notice, the outside function is f = u2 and the inside function is u =
x− 1

2x + 3
, so when we take the

derivative of u we will use the quotient rule.

dy

dx
=

dy

du
· du
dx

= 5

(
x− 1

2x + 3

)4 d

dx

(
x− 1

2x + 3

)

= 5

(
x− 1

2x + 3

)4 [(2x + 3)(1)− (x− 1)(2)

(2x + 3)2

]

= 5

(
x− 1

2x + 3

)4 [ 5

(2x + 3)2

]

=
25(x− 1)4

(2x + 3)6
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Example 3.5.4

Let y = (3x− 1)2(4x2 + x− 5)4, find y′.

Answer:

We use the product and chain rule. Again we will use the simplified process as in the last example.

y′ = (3x− 1)2
d

dx
[(4x2 + x− 5)4] + (42 + x− 5)4

d

dx
[(3x− 1)2]

= (3x− 1)2 · 4(4x2 + x− 5)3 · (8x + 1) + (4x2 + x− 5)4 · 2(3x− 1)1 · 3

= 2(4x2 + x− 5)3(3x− 1)[(3x− 1)(2)(8x + 1) + (4x2 + x− 5)(3)]

= 2(4x2 + x− 5)3(3x− 1)[60x2 − 7x− 17]

Example 3.5.5

Let y = etan(x), find y′.

Answer: H ere the inner function is g(x) = tanx and the outer function is f(x) = ex

y′ = etan(x)
d

dx
[tan(x)] = sec2(x)etan(x)

Example 3.5.6

Find y′ for each of the following:

a.) y = tan(x2)

Answer: H ere the inner function is g(x) = x2 and the outer function is f(x) = tanx. Using

the chain rule, we have

y′ = sec2(x2)
d

dx
[x2] = 2x sec2(x2).

b.) y = tan2(x)

Answer: H ere the inner function is g(x) = tan(x) and the outer function is f(x) = x2.

Using the chain rule, we have

y′ = 2(tan(x))1
d

dx
[tan(x)] = 2 tan(x) sec2(x).
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Example 3.5.7

f(x) = 5 sec(5x) Find f ′(x).

Answer:

In this case, the inside function is g(x) = 5x and the outside function is f(x) = 5 secx.

f ′(x) = 5
(

sec(5x) tan(5x)
) d

dx
[5x]

= 25 sec(5x) tan(5x)
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The Chain Rule for Three Functions.

We are not limited to using the chain rule when only two functions are composed. We can extend
the rule to as many functions as we like. We will consider the composition of three functions below.

Let y = (f ◦ g ◦ h)(x) = f((g ◦ h)(x))) = f(g(h(x))) The inside function for f is (g ◦ h)(x)
and the inside function of g is h(x)
Therefore by applying the chain rule twice we get the following.

dy

dx
= [f ′(g ◦ h)(x))] · [g ◦ h)′(x)]

= [f ′(g ◦ h)(x))] · [g′(h(x)] · [h′(x)]

Example 3.5.8

If y = esin
(
x2+x

)
, find dy

dx .

Answer: I n this example, f(x) = ex, g(x) = sinx, and h(x) = x2 + x

dy

dx
= esin

(
x2+x

)
d

dx

[
sin

(
x2 + x

)]
= esin

(
x2+x

)
cos

(
x2 + x

) d

dx

[
x2 + x

]
=

[
esin

(
x2+x

)] [
cos

(
x2 + x

)]
[2x + 1]
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Using the Chain Rule to Differentiate y = ax.

In section 3.2 we talked about finding the derivative of exponential functions, f(x) = ax where
a > 0, a 6= 1. We are not ready to evaluate the limit from that section, but we can calculate the
derivative using the chain rule. (Note: We will also see what the limit can eventually be shown to
equal).

Given that y = ax, a > 0, a 6= 1 we will use the chain rule to find y′

Recall elnx = x so,
ax = eln(a

x) = ex ln(a)

Therefore y = ax = ex ln(a) so

y′ = ex ln(a) d

dx
[x ln(a)]

= ex ln(a) ln(a)

= ax ln(a)

Now we have the formula for finding the derivative of a general exponential function. Assuming
a > 0, a 6= 1,

y = ax implies
dy

dx
= (ln a)ax
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Section 3.6
Implicit Differentiation

Introduction

Objective 3.6.1 Use implicit differentiation to find dy/dx.

Objective 3.6.2 Use implicit differentiation to find d2y/dx2.

Objective 3.6.3 Use implicit differentiation to find the equation of the tangent line to a curve at
a given point.
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It is not necessary to express one variable explicitly in terms of another to find a derivative. We
have a technique that allows us to differentiate y when it is defined implicitly. It is called Implicit
Differentiation.

Consider the equation x3 + y3 = 4. To find
dy

dx
using implicit differentiation,

first we will differentiate each side with respect to x. Recall that y is a function of x so we
must use the chain rule when finding the derivative.

3x2
d

dx
[x] + 3y2

d

dx
[y] = 0

Differentiating gives us.

3x2 + 3y2
dy

dx
= 0

Now solve for dy
dx .

3y2
dy

dx
= −3x2

dy

dx
= −x2

y2

Example 3.6.1

Given the equation x3 · y3 = 8, find
dy

dx
.

Answer:

First, differentiate both sides with respect to x.

x3
d

dx

[
y3
]

+ y3
d

dx

[
x3
]

= 0

x3 · 3y2 dy
dx

+ y3 · 3x2 = 0

Solve for dy
dx by moving all terms that contain dy

dx in them to one side of the equation and every
other term to the opposite side. Then simplify the answer.

3x3y2
dy

dx
= −3x2y3

dy

dx
= −3x2y3

3x3y2

dy

dx
= −y

x
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Example 3.6.2

Given the equation x3 · y3 = 8, find
d2y

dx2
.

Answer: F rom the previous example we saw that,

dy

dx
= −y

x

To find
d2y

dx2
we will need to take the derivative with respect to x one more time. We need to

differentiate both sides with respect to x.

d

dx

(
dy

dx

)
=

x dy
dx − y d

dx(x)

x2

d2y

dx2
=

x dy
dx − y

x2

Now we replace dy
dx to get

d2y

dx2
=

x(− y
x)− y

x2

Which simplifies to

d2y

dx2
=
−2y

x2
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Example 3.6.3

Given the equation x2 − 2xy + y3 = C where C is a real number, find dy
dx .

Answer: D ifferentiate both sides with respect to x.. Remember to use the product rule when

differentiating the term 2xy.

2x−
[
2x

dy

dx
+ 2y

]
+ 3y2

dy

dx
= 0

Solve for dy
dx by moving all terms that contain dy

dx to one side of the equation and every other term
to the opposite side. Simplify the answer.

−2x
dy

dx
+ 3y2

dy

dx
= −2x + 2y

dy

dx

[
3y2 − 2x

]
= −2x + 2y

dy

dx
=
−2x + 2y

3y2 − 2x
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Example 3.6.4

Given the equation cos(x− y) = x · ex, find
dy

dx
.

Answer: D ifferentiate both sides with respect to x.

− sin(x− y)
d

dx
[x− y] = xex + ex

Solve for dy
dx by moving all terms that contain dy

dx to one side of the equation and every other term
to the opposite side. Simplify the answer.

− sin(x− y)

[
1− dy

dx

]
= xex + ex

(
1− dy

dx

)
=

xex + ex

− sin(x− y)

−dy

dx
=

xex + ex

− sin(x− y)
− 1

dy

dx
=

xex + ex

sin(x− y)
+ 1

Example 3.6.5

Given y5 + x2y3 = 1 + yex
2
, find dy

dx .

Answer: D ifferentiate both sides with respect to x.

5y4
dy

dx
+

[
x2 · 3y2 dy

dx
+ y2 · 2x

]
= 0 +

[
y · ex2

(2x) + ex
2 · dy

dx

]
Solve for dy

dx by moving all terms that contain dy
dx to one side of the equation and every other term

to the opposite side. Simplify the answer.

5y4
dy

dx
+ 3x2y2

dy

dx
− ex

2 dy

dx
= −2xy2 + 2xyex

2

dy

dx

[
5y4 + 3x2y2 − ex

2]
= −2xy2 + 2xyex

2

dy

dx
=

−2xy2 + 2xyex
2

5y4 + 3x2y2 − ex2
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Example 3.6.6

Given y cos(x2) = x tan(y2), find dy
dx .

Answer: F ind the derivative of both sides with respect to x.

y · d(cos(x2))

dx
+ cos(x2) · dy

dx
= x · d(tan(y2))

dx
+ tan(y2) · (1)

Solve for dy
dx by moving all terms that contain dy

dx to one side of the equation and every other term
to the opposite side. Simplify the answer.

y · [− sin(x2)](2x) + cos(x2)
dy

dx
= x

[
[sec2(y2)] · 2y · dy

dx

]
+ tan(y2)

cos(x2)
dy

dx
− 2xy sec2(y2)

dy

dx
= tan(y2) + 2xy sin(x2)

⇒ dy

dx
=

tan(y2) + 2xy sin(x2)

cos(x2)− 2xy sec2(y2)
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Example 3.6.7

Given the equation x2/3 + y2/3 = 1, find dy
dx and the equation of the tangent line at the point(

−1
8 ,

3
√
3

8

)
.

Answer:

Recall that the slope of the tangent line is given by dy
dx .

2

3
x−1/3 +

2

3
y−1/3

dy

dx
= 0

2

3
y−1/3

dy

dx
= −2

3
x−1/3

dy

dx
= −x−1/3

y−1/3

dy

dx
= −y1/3

x1/3

To find the slope at the point given:

dy

dx
=
− 3

√
3
√
3

8

3

√
−1

8

=
−
√
3
2

−1
2

=
√

3

Therefore, the equation of the tangent line at the point given is

y − 3
√

3

8
=
√

3

(
x +

1

8

)
.
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Section 3.7
Related Rates

Introduction

Objective 3.7.1 Given a word problem, find an equation that relates two given quantities.

Objective 3.7.2 Solve related rates word problems of various types.

In related rates problems, we often see that two different quantities are changing over time and that
the changes in the rates are related. For example, when flying a kite, the rate at which the string
is being played out and the rate at which the vertical height of the kite is changing are related to
each other. However, the rate at which the string is played out is generally much easier to measure
than the rate at which the height of the kite is changing.

��
��

��
�
��

�
��

�
��

θ

length of string
vertical height

Kite

We will use the rate that is easier to find and the relationship between the two rates to determine
the value of the rate that is more difficult to measure. Now, let us discuss a typical related rates
problem.

Sand is falling from a conveyor belt at a rate of 20 ft3/min. It forms a pile in the shape of a
cone whose height is always equal to the diameter of the base. How fast is the height of the pile
increasing when the pile is 8 ft high?

After reading through the problem, we draw a diagram.

Next we write an equation that describes the relationship between the variables in the problem. In
this case it is the volume of the cone.

V =
1

3
πr2h
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.
We are asked to find the rate at which the height is increasing, dh

dt , when the height, h, and rate

at which the volume is changing, dVdt , are specified. The known values must be used in an equation

that describes the relationship between dh
dt and dV

dt , so we will need to use implicit differentiation on
the volume formula to obtain it. Before using implicit differentiation, we need to replace any other
variables, except V and h, in the formula. The height equals the diameter at every time in the
process, therefore, h = d = 2r. We can replace r with h

2 in the volume formula to get the formula

V =
1

3
π

(
h

2

)2

h

=
1

12
πh3.

The equation for volume is in terms of a single variable, h, so we can use implicit differentiation to
write dV

dt in terms of h and dh
dt .

dV

dt
=

d

dt

(
1

12
πh3

)
=

(π
4
h2
) dh

dt
.

Solving for dh
dt gives us the equation

dh

dt
=

dV

dt

(
4

πh2

)
.

Replacing dV
dt with 20 and h with 8 we determine that

dh

dt
= 20

(
4

π(8)2

)
= 0.398 ft/min.
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The process we used can be generalized into the following steps to help you solve the problem.

Procedure for Solving Related Rates Problems

Step 1: Read the problem. Identify quantities involved in the statement of the problem.

Step 2: Draw a diagram which illustrates the relationship among the quantities discussed in the
problem. Identify variables.

Step 3: Write an equation that describes a relationship among the variables.

Step 4: Use a constraint equation to replace any variables that do not involve the rates in which we
are interested.

Step 5: Differentiate implicitly with respect to time.

Step 6: Substitute the value of the known variables and rates to get an equation with just the desired
rate.

Step 7: Solve for desired rate.

We now consider the related rates problem discussed at the beginning of the section.

Example 3.7.1

A kite 80 feet above the ground moves horizontally at a speed of 6 feet per second. At what rate is
the angle between the string and the horizontal decreasing when 160 feet of string have been let out?

Step 1:
We are interested in the rate the angle is changing given the horizontal speed while the height is
remaining at 80 feet.

Step 2:

��
�
��
�
��

�
��

�
��
�

x

θ

s
80

Kite

Let s represent the length of the string. Let x represent the horizontal distance from the person
flying the kite to the spot on the ground directly under the kite. Let θ represent the angle the string
makes with the ground. The horizontal speed is the rate at which the horizontal distance between
the kite and the person holding the string is changing is dx

dt . The rate the angle θ is changing is

given by dθ
dt .
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Step 3:
We will use a trigonometric relationship to write an equation that will relate the angle θ to the
length x.

tan θ =
80

x
.

Step 4:
There are no unwanted variables in the formula so we skip to step 5.

Step 5:
Differentiate each side of the equation with respect to time, t.

sec2(θ) · dθ

dt
= −80x−2 · dx

dt
.

Step 6:
We need to replace the values of x, θ and dx

dt into the equation from Step 5 to solve for dθ
dt . To

determine the measurement of x, we can use the fact that s = 160 ft of string is let out; therefore,
by the Pythagorean Theorem

x =
√

1602 − 802 = 138.564 ft.

To find θ we recall from trigonometry that sin θ = opp
hyp = 80

160 = 1
2 and 0 < θ < 90◦. Therefore,

θ = sin−1

(
1

2

)
=
π

6
.

We also know that dx
dt = 6. Replacing these values in the formula from Step 5, we get the equation

sec2
(π

6

)
· dθ

dt
=
−80

19200
(6).

Step 7:
Solving for dθ

dt we get
dθ

dt
= −0.01875 radian/sec.
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Example 3.7.2

An ice cream cone has the shape of an inverted circular cone with a base of radius 2 inches and
height of 4 inches. If soft serve ice cream is being pumped into the cone at a rate of 2 in3/min, find
the rate at which the ice cream level is rising when the ice cream is 3 in deep.

Step 1:
We are interested in finding a relationship between the rate of change of the volume of the ice
cream in the cone and the rate of change of the depth of the ice cream.

Step 2:

Let V represent the volume of the ice cream. Let r represent the radius of the base of the cone.
Let h represent the depth of the ice cream in the cone. The rate at which the volume of the ice
cream is changing is given by dV

dt . The rate at which the depth of the ice cream is changing is given

by dh
dt .

Step 3:
We want an equation that relates volume, height, and radius. We will use the volume formula

V =
1

3
πr2h.

Step 4:
We need to remove the variable r, the radius of the base of the cone, from the formula before
differentiating. From the information given, we see from similar triangles that the ratio of the
radius of the cone to the height is given by the proportion

r

h
=

2

4
which implies r =

1

2
h.

The volume equation now becomes

V =
1

2
π(

1

2
h)2h.

Which simplifies to

V = (
π

8
)h3.
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Step 5:

dV

dt
=
(π

4

) (
h2
)( dh

dt

)
.

Step 6:
Replacing dV

dt with 2 and h with 3 yields

2 =
π

4
· (3)2

dh

dt
.

Step 7:
Solving for dh

dt yields

dh

dt
= 0.2829 in/min.
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Example 3.7.3

A boat is pulled into a dock by a rope attached to the bow of the boat. The rope passes through a
pulley on the dock that is 1 meter higher than the bow of the boat. If the rope is pulled in at a rate
of 1 meter per second, how fast is the boat approaching the dock when it is 6 meters from the dock?

Step 1:
We are interested in finding the rate at which the distance from the dock to the boat is changing
given information about the length of rope and the rate at which the boat is being pulled to the
dock; i.e., how fast the rope is being pulled in.

Step 2:

��
�
��
�
��

�
��

�
��
�

q

θ

r
1m

Dock

Boat

Letting q represent the horizontal distance from the boat to the dock and r represent the length of
the rope, we are interested in finding the rate at which the distance to the dock is changing, dq

dt ,

when the rate the length of the rope is changing, dr
dt , is −1 meters per second. (NOTE: the rate is

negative because the length of the rope is decreasing as the boat gets closer to the dock.) and q is
6 feet.

Step 3:
We want an equation that will relate r and q. Using the Pythagorean theorem we see that

r2 = 1 + q2.

Step 4:
There are no extra variables to replace, so go to Step 5.

Step 5:
Differentiating both sides we get,

2r · dr

dt
= 2q · dq

dt
.

Step 6:
When q = 6, r =

√
37. Replace dr

dt = −1 and q = 6, r =
√

37 to get,

2(
√

37) · (−1) = 2(6) · dq

dt
.

Step 7:
Solving for dq

dt we get,

dq

dt
=
−
√

37

6
= −1.0169 m/s.
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Example 3.7.4

Two sides of a triangle have lengths 10 meters and 13 meters. The angle between them is increasing
at a rate of 3 degrees per minute. How fast is the length of the third side increasing when the angle
between the sides of fixed length is 60◦?

Step 1:
We are interested in finding how fast the length of one side of a triangle is changing when the angle
opposite that side is a given measure.

Step 2:

HH
H

HH
H

HH
H
HH

��
�
��

�
��

�
��

13 m

θ

10 m x

Let two sides of a triangle have length 10 m and 13 m and represent the third side by the variable
x. Let the angle between the two known sides be represented by θ. The rate at which the third
side is changing is given by dx

dt . The rate at which the angle is changing is given by dθ
dt .

Step 3:
We want a formula that relates θ and x. The Law of Cosines states that a2 = b2 + c2 − 2bc cosα,
where a, b, c are the three sides of a triangle and α is the angle opposite side a.

H
HH

H
HH

H
HH

HH

�
��

�
��

�
��

��

c

α

b a

Using the Law of Cosines, we have

x2 = 102 + 132 − 2(10)(13) cos(θ).

Step 4:
We don’t have extra variables we need to replace in the equation, so go on to Step 5.
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Step 5:
Implicitly differentiating each side with respect to t yields,

2x · dx

dt
=

(
−2(10)(13)(− sin θ) )(

dθ

dt

)
.

Step 6:
We know that dθ

dt = 3◦ = π
60 and recall that θ = 60◦ = π

3 . The value of x at this instant is

x2 = 102 + 132 − 2(10)(13) cos
(π

3

)
= 139 implies that x =

√
139.

Replacing those variables into the equation from Step 5 yields,

2(
√

139 · dx

dt
= −2(10)(13)(− sin

π

3
) · π

60
.

Step 7:
Solving for dx

dt yields,

dx

dt
=

130√
139

(sin
π

3
) · π

60

= .499994 m/min.
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3.8 Derivatives of Inverse Trigonometric Functions

After completing this section, the learner will be able to...

Objective 3.8.1. Derive the derivative of y = sin−1 x.

Objective 3.8.2. Derive the derivative of y = cos−1 x.

Objective 3.8.3. Derive the derivative of y = tan−1 x.

Objective 3.8.4. Use the derivatives of the inverse trigonometric functions to dif-
ferentiate functions.
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Finding derivatives of inverse trigonometric functions requires careful consideration
due to the way the functions are defined. Recall that trigonometric functions are periodic;
therefore, they are not one-to-one and do not have inverses that are functions. By restrict-
ing the domain of each of the trigonometric functions; we obtain a one-to-one function with
the same range as the unrestricted function.

3.8.1 Derivative of the Inverse Sine Function

To define y = sin−1 x, we use the part of
y = sin x such that −π

2
≤ x ≤ π

2
. The new

function has domain [−π
2
, π
2
] and range [−1, 1].

See figure on the left.

This new function is one-to-one; therefore,
we can define an inverse function, y = sin−1 x
with domain [−1, 1] and range [−π

2
, π
2
]. See

figure on the left.
Note that, sin−1(−1

2
) = −π

6
.

Since the two functions are inverses of each
other, we can see that

y = sin−1 x

implies that
x = sin y.

Differentiating implicitly we get

dx

dx
= (cos y)dy

dx
.

We now simplify and solve for dy
dx

to get

dy

dx
=

1

cos y , provided cos y ̸= 0.
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When 0 < y < π
2
, we can see the rela-

tionship between x and y by using the right
triangle we get from the unit circle. The tri-
angle is illustrated on the left.
Using the diagram of the triangle we see that

cos y =

√
1− x2

1
.

Replacing cos y above we get

dy

dx
=

1√
1− x2

.

If −π
2
< y < 0 we can use the identities, cos(−y) = cos(y) and (−x)2 = x2 to get the

same derivative formula.
We will now consider the cases where y = 0, y = −π

2
and y = π

2
.

• When y = 0, x = sin 0 = 0.

dy

dx
=

1

cos y =
1

cos 0 =
1

1
= 1 and 1√

1− x2
=

1√
1− 02

= 1.

• When y = −π
2
, x = sin(−π

2
) = −1 and cos(−π

2
) = 0 =

√
1− 12 =

√
1− x2.

Since 1
0

is undefined, this formula does not give us the derivative of sin−1 x at x = −1.
It turns out that sin−1 x is not differentiable at x = −1.
A similar result holds when x = +1.

Basic Formulas 1.
d

dx
(sin−1 x) =

1√
1− x2

, for − 1 < x < 1.
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3.8.2 Derivative of the Inverse Cosine Function

To define y = cos−1 x, we use the part of
y = cos x such that 0 ≤ x ≤ π. The new
function has domain [0, π] and range [−1, 1].
See figure on the left.

This function is one-to-one; therefore, we
can define an inverse function, y = cos−1 x
with domain [−1, 1] and range [0, π]. See fig-
ure on the left.
Note that, cos−1(−

√
3
2
) = 5π

6
.

Since the two functions are inverses of each
other, we can see that

y = cos−1 x

implies that
x = cos y.

Differentiating implicitly gives

dx

dx
= (− sin y)

dy

dx
.

We now simplify and solve for dy
dx

to get

dy

dx
=

−1

sin y
, provided sin y ̸= 0.

When 0 < y < π
2
, we can see the re-

lationship between x and y by using a right
triangle as illustrated on the left.
Using the diagram of the triangle we see that

sin y =

√
1− x2

1
.

Replacing sin y above we get

dy

dx
=

−1√
1− x2

.

If π
2
< y < π we can use the identities, sin(−y) = − sin(y) and (−x)2 = x2 to get the

same derivative formula.
We will now consider the cases where y = 0, y = π

2
and y = π.
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• When y = π
2
, x = cos π

2
= 0.

dy

dx
=

1

sin y
=

1

sin(π
2
)
=

1

1
= 1 and 1√

1− x2
=

1√
1− 02

= 1.

• When y = 0, x = cos 0 = 1, sin 0 = 0 and
√
1− 11 = 0.

Since 1
0

is undefined, this formula does not give us the derivative when y = 0. It turns
out that cos−1 x is not differentiable at x = 1.
Similarly, cos−1 x is not differentiable at x = −1.

Basic Formulas 2.
d

dx
(cos−1 x) =

−1√
1− x2

, for − 1 < x < 1.
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3.8.3 Derivative of the Inverse Tangent Function

To define y = tan−1 x, we use the part of
y = tan x such that −π

2
< x < π

2
. The new

function has domain (−π
2
, π
2
) and range (−∞,∞).

This new function is one-to-one; therefore,
we can define an inverse function, y = tan−1 x
with domain (−∞,∞) and range (−π

2
, π
2
).

Note that, tan−1(−1) = −π
4
.

Since the two functions are inverses of each
other, we can see that

y = tan−1 x

implies that
x = tan y.

Differentiating implicitly we get

dx

dx
= (sec2 y)

dy

dx
.

Solve for dy
dx

to get

dy

dx
=

1

sec2 y
.

When 0 < y < π
2
, we can see the rela-

tionship between x and y by using the right
triangle illustrated on the left.

Using the diagram of the triangle we see
that

sec y =

√
1 + x2

1
.

Replacing sec y above we get
dy

dx
=

1

(
√
1 + x2)2

=
1

1 + x2
.
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If −π
2
< y < 0 we can use the identities, sec(−y) = sec(y) and (−x)2 = x2 to get the

same derivative formula.
We will now consider the case where y = 0. When y = 0, x = tan 0 = 0.

dy

dx
=

1

sec2 y
=

1

sec2 0
=

1

12
= 1 and 1

1 + x2
=

1

1 + 02
= 1.

Basic Formulas 3.
d

dx
(tan−1 x) =

1

1 + x2
, for −∞ < x < ∞.

Calculus I 7 ©2014-16 Brenda Burns-Williams and Elizabeth Dempster

Last update: October 6, 2014

Calculus I 7 ©2014-16 Brenda Burns-Williams and Elizabeth Dempster

Last update: October 6, 2014

Calculus I 7 ©2014-16 Brenda Burns-Williams and Elizabeth Dempster

Last update: October 6, 2014



Basic Formulas 4. The derivatives for y = sin−1 x, y = cos−1 x, and y = tan−1 x
are the ones that are used most often. The derivatives of the remaining trigono-
metric functions are

d

dx
(csc−1 x) = − 1

x
√
x2 − 1

, for x < −1 or x > 1.

d

dx
(sec−1 x) =

1

x
√
x2 − 1

, for x < −1 or x > 1.

d

dx
(cot−1 x) = − 1

1 + x2
, for −∞ < x < ∞.

Example 3.8.1. Differentiate y = (tan−1 x)2.

Solution:

dy

dx
=
(
2(tan−1 x)2−1

)( d

dx
(tan−1 x)

)
Differentiate using the Chain Rule.

= 2(tan−1 x)

(
1

1 + x2

)
Differentiate tan−1 x.

=
2 tan−1 x

1 + x2
. Simplify.
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Example 3.8.2. Differentiate y = tan−1(x2).

Solution:

dy

dx
=

(
1

1 + (x2)2

)(
d

dx
(x2)

)
Differentiate using the Chain Rule.

=

(
1

1 + (x2)2

)
(2x) Differentiate the inside function, x2.

=
2x

1 + x4
. Simplify.

Example 3.8.3. Differentiate y = sin−1 x+ x
√
1− x2.

Solution:

dy

dx
=

1√
1− x2

+ (x)

(
d

dx
(1− x2)

)
+

(
d

dx
(x)

)(√
1− x2

)
Differentiate sin−1 x

then use
Product Rule.

=
1√

1− x2
+ (x)(−2x) + (1)(

√
1− x2) Differentiate.

=
1√

1− x2
− 2x2 +

√
1− x2. Simplify.
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Exercises with Inverse Trigonometric Functions Section 3.8

Find dy
dx

for the following functions of x in problems 1- 10. Note: arcsin, arccos, and arctan
are alternate notation for sin−1, cos−1, and tan−1.

1. y = tan−1 x+ 3x5 + e2

2. y = 2x
arcsin(2x)

3. y = x cos−1 x−
√
1− x2

4. y = arccos(tan(3x+ 1))

5. y = (tan−1 x)3

6. y = tan−1(x3)

7. y = arcsin x+ x
√
1− x2

8. y = sec(tan−1 x)

9. y = arctan(4x)
e4x

10. y = x sin−1(3x+ 1)

Find the equation of the tangent lines to the following functions
at the given points for problems 11-15.

11. y = tan−1 x at the point (1, π
4
)

12. y = cos−1 x at the point (1, 0)

13. y = sin−1 x+ 2x at the point (1, 2 + π
2
)

14. y = 3cos−1x
x+1

at the point (0, 3)

15. y = x+ sin−1 x at the point (0, 0)
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3.9 Derivatives of Logarithmic Functions

After completing this section the learner will be able to...

Objective 3.9.1. Derive the derivative of y = loga x.

Objective 3.9.2. Derive the derivative of y = ln x.

Objective 3.9.3. Use logarithmic differentiation to find the derivative of a function.
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In this section we will determine the derivative of the logarithmic function y = loga x
for all a > 0, a ̸= 1, and when x > 0. A special case gives the derivative for the natural
logarithmic function, y = ln x. Once we have those derivatives, we will take a look at how
they can help us determine derivatives we have previously been unable to calculate.

We will first find the derivative for y = loga x for any a > 0, a ̸= 1, and x > 0.
Notice that y = loga x implies

ay = x.

Using implicit differentiation, we get

(ln a)(ay)

(
dy

dx

)
=

dx

dx
.

Replace ay with x and simplifying, we get

(ln a)(x)

(
dy

dx

)
= 1.

Now solve for dy
dx

to see that

d

dx
(loga x) =

1

x ln a
for x > 0.

When the base a = e, the derivative is

d

dx
(ln x) =

d

dx
(loge x) =

1

x ln e
=

1

x
for x > 0.
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Example 3.9.1. Given y = log8(x
2 + x− 1), find y′.

Solution:

y′ =
1

(x2 + x− 1) ln 8
· d

dx
(x2 + x− 1) =

2x+ 1

(x2 + x− 1) ln 8
.

Notice that the function above is the composition of two functions. So in general
we can see that if

f(x) = loga(g(x)), then f ′(x) =
g′(x)

(g(x))(ln a)

or in the case that a = e we have

f ′(x) =
d

dx
(ln g(x)) =

g′(x)

g(x)
.

Example 3.9.2. Given y = ln(2x), find y′.

Solution:
y′ =

d
dx
(2x)

2x
=

2

2x
=

1

x
.

Another way to see this is to use log rules to rewrite y as y = ln 2 + ln x. The first
term is a constant, so y′ = 0 + 1

x
= 1

x
, as we found above.

Example 3.9.3. Given y = ln(sin x), find y′.

Solution:
y′ =

d
dx
(sin x)

sin x
=

cos x
sin x

= cot x.
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Example 3.9.4. Given y = log5(2x+ 3), find y′.

Solution:
y′ =

d
dx
(2x+ 3)

(2x+ 3)(ln 5)
=

2

(2x+ 3)(ln 5)
.

Example 3.9.5. Given y = ln(−4x) cos(3x), find dy
dx

.

Solution:
dy

dx
= ln(−4x)

d

dx
(cos(3x)) + (cos(3x)) d

dx
(ln(−4x)) Use product rule.

= ln(−4x) (− sin(3x)) d

dx
(3x) + (cos(3x))

(
d
dx
(−4x)

−4x

)
Differentiate.

= − ln(−4x) sin(3x)(3) + (cos(3x))
(

−4

−4x

)
Differentiate.

= −3 ln(−4x) sin(3x) + cos(3x)
x

. Simplify.
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Example 3.9.6. Given y = ln
[

x+ 1√
3x+ 4

]
, find y′.

Solution: Without using properties of logarithms, we can differentiate to obtain

y′ =
1[

x+1√
3x+4

] · 1 · √3x+ 4− (x+ 1) · 3
2
√
3x+4

(
√
3x+ 4)2

=
1

x+ 1
·
(3x+ 4)− (x+ 1) · 3

2

(3x+ 4)

=
1

x+ 1
− 3

2(3x+ 4)
.

Or an alternate method would be to first can rewrite y using properties of loga-
rithms:

y = ln
[

x+ 1√
3x+ 4

]
= ln(x+ 1)− ln(

√
3x+ 4)

= ln(x+ 1)− ln(3x+ 4)1/2.

So,

y = ln(x+ 1)− 1

2
ln(3x+ 4).

From here, we can take the derivative of y more easily than before:

y′ =
1

x+ 1
(1)− 1

2
· 1

3x+ 4
(3) =

1

x+ 1
− 3

2(3x+ 4)
.
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Example 3.9.7. Given y = log5(xe
x) + sec3(5x), find y′.

Solution: Use logarithm rules to rewrite.

y = log5 x+ log5 e
x + sec3(5x),

From here we can take the derivative of y:

y′ =
d

dx
(log5 x) +

d

dx
(log5 e

x) + 3
[
(sec3−1(5x)

] [ d

dx
(sec(5x))

]

=
1

x ln 5
+

d
dx
(ex)

ex ln 5
+ 3[sec2(5x)] · [sec(5x) tan(5x)] ·

[
d

dx
(5x)

]
=

1

x ln 5
+

ex

ex ln 5
+ 3[sec2(5x)] · [sec(5x) tan(5x)] · [5]

=
1

x ln 5
+

1

ln 5
+ 15[sec3(5x)] tan(5x).
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Example 3.9.8. Given y = ln(sec x+ tan x), find y′ and y′′.

Solution: For the first derivative of y:

y′ =
d
dx
(sec x+ tan x)

sec x+ tan x

=
(sec x tan x+ sec2 x)

sec x+ tan x

=
sec x(sec x+ tan x)

sec x+ tan x

= sec x.

For the second derivative of y we find the derivative of sec x.

y′′ = sec x tan x.
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Example 3.9.9. Find f ′(x) if f(x) = ln |x|.

Solution: Recall that

f(x) =

 ln(x) if x > 0

ln(−x) if x < 0

It follows that

f ′(x) =

 1
x

if x > 0

1
−x

· (−1) = 1
x

if x < 0

Therefore, f ′(x) = 1
x

for all x ̸= 0. Thus we have shown that,

If f(x) = ln |x|, f ′(x) = 1
x
, x ̸= 0.
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Finding derivatives of complex functions involving powers, products, or quotients are
often too complicated for the techniques we have seen. We can use logarithms to find
the derivatives of some of these complex functions. This method is called logarithmic
differentiation. The steps are as follows:

1. Logarithmic Differentiation Procedure.

1. Take the logarithm of both sides.

2. Simplify using properties of logarithms.

3. Differentiate implicitly.

4. Solve for dy
dx

.

5. Substitute for y and write dy
dx

in terms of x (if possible).
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Example 3.9.10. Given y = (cot x)ln x, find y′.

Solution:

y = (cot x)ln x

ln y = ln
(
(cot x)ln x

)
Take the logarithm of

both sides.
ln y = [ln x][ln(cot x)] Rewrite using logarithm

properties.
d

dx
(ln(y)) = [ln x] · d

dx
[ln(cot x)] + [ln(cot x)] · d

dx
[ln x] Differentiate both sides

with respect to x.
1

y

dy

dx
= [ln x] ·

[
1

cot x(− csc2 x)

]
+ [ln(cot x)] · 1

x

1

y

dy

dx
=

(ln x)(− csc2 x)

cot x +
ln(cot x)

x

dy

dx
=

[
(ln x)(− csc2 x)

cot x +
ln(cot x)

x

]
y Solve for dy

dx
.

dy

dx
=

[
(ln x)(− csc2 x)

cot x +
ln(cot x)

x

]
(cot x)ln x Substitute for y.
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Example 3.9.11. Given yx = xy, find y′ = dy
dx

.

Solution:

yx = xy

ln yx = ln xy Take the logarithm of
both sides.

x ln y = y ln x Rewrite using logarithm
properties.

x · d(ln y)

dx
+ ln y · d(x)

dx
= y · d(ln x)

dx
+ (ln x) · dy

dx
Differentiate both sides.

x
1

y

dy

dx
+ (ln y)(1) = y

1

x
+ (ln x)

dy

dx

x

y

dy

dx
− (ln x)

dy

dx
=

y

x
− ln y Collect the terms with dy

dx
on

one side of equation.(
x

y
− ln x

)
dy

dx
=

y

x
− ln x Factor.

dy

dx
=

y
x
− ln y

x
y
− (ln x)

Divide to get dy
dx

by itself.

⇒ dy

dx
=

y2 − xy ln y

x2 − xy ln x
Simplify.
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Exercises with Logarithmic Functions Sections 3.9

Find the derivatives of the given functions.

1. H(z) = 5 log2(z) + 2z

2. G(x) = lnx
4x2+1

3. F (t) = ln(5t2 + 4)

4. y = x ln x− x

5. J(s) = elns

6. G(t) = (arctan t)(ln(4t2))

7. y = ln(x+
√
3x− 1)

8. F (x) = (log2(5x))
3

9. s = 2t log(t4)

10. y = 2−lnx
2+lnx

Write the equation of the tangent line to the curve for problems 11 and 12.

11. y = ln(x4 − 15) at the point (2, 0)

12. y = ln(xex) at the point (1, 1)

Use logarithmic differentiation to find the derivative of the given functions in
problems 13-16.

13. y = (2x+1)3(4x2+5x+1)2√
3x−7

14. y = (sin x)2x

15. y =
√
x(3x+ 1)4e2x

16. y = xcos x
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