# Vector Calculus 3rd edition

Susan Jane Colley
Publisher: Pearson Education

Access is contingent on use of this textbook in the instructor's classroom.

Higher Education Single Term \$29.95
High School \$10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Vectors
• 1.1: Vectors in Two and Three Dimensions (6)
• 1.2: More About Vectors (10)
• 1.3: The Dot Product (8)
• 1.4: The Cross Product (9)
• 1.5: Equations for Plans; Distance Problems (9)
• 1.6: Some n-dimensional Geometry (9)
• 1.7: New Coordinate Systems (9)
• 1.8: True/False Exercises for Chapter 1
• 1.9: Miscellaneous Exercises for Chapter 1

• Chapter 2: Differentiation in Several Variables
• 2.1: Functions of Several Variables; Graphing Surfaces (10)
• 2.2: Limits (10)
• 2.3: The Derivative (10)
• 2.4: Properties; Higher-order Partial Derivatives; Newton's Method (10)
• 2:5 The Chain Rule (7)
• 2.6: Directional Derivatives and the Gradient (9)
• 2.7: True/False Exercises for Chapter 2
• 2.8: Miscellaneous Exercises for Chapter 2

• Chapter 3: Vector-Valued Functions
• 3.1: Parametrized Curves and Kepler's Laws (7)
• 3.2: Arclength and Differential Geometry (7)
• 3.3: Vector Fields; An Introduction (7)
• 3.4: Gradient, Divergence, Curl and the Del Operator (6)
• 3.5: True/False Exercises for Chapter 3
• 3.6: Miscellaneous Exercises for Chapter 3

• Chapter 4: Maxima and Minima in Several Variables
• 4.1: Differentials and Taylor's Theorem (10)
• 4.2: Extrema of Functions (10)
• 4.3: Lagrange Multipliers (7)
• 4.4: Some Applications of Extrema (5)
• 4.5: True/False Exercises for Chapter 4
• 4.6: Miscellaneous Exercises for Chapter 4

• Chapter 5: Multiple Integration
• 5.1: Introduction: Area and Volumes (10)
• 5.2: Double Integrals (10)
• 5.3: Changing the Order of Integration (10)
• 5.4: Triple Integrals (10)
• 5.5: Change of Variables (10)
• 5.6: Applications of Integration (10)
• 5.7: True/False Exercises for Chapter 5
• 5.8: Miscellaneous Exercises for Chapter 5

• Chapter 6: Line Integrals
• 6.1: Scalar and Vector Line Integrals (10)
• 6.2: Green's Theorem (10)
• 6.3: Conservative Vector Fields (10)
• 6.4: True/False Exercises for Chapter 6
• 6.5: Miscellaneous Exercises for Chapter 6

• Chapter 7: Surface Integrals and Vector Analysis
• 7.1: Parametrized Surfaces (7)
• 7.2: Surface Integrals (10)
• 7.3: Stoke's and Gauss's Theorems (8)
• 7.4: Further Vector Analysis; Maxwell's Equations
• 7.5: True/False Exercises for Chapter 7
• 7.6: Miscellaneous Exercises for Chapter 7

• Chapter 8: Vector Analysis in Higher Dimensions
• 8.1: An Introduction to Different Forms (10)
• 8.2: Manifolds and Integrals of k-forms (5)
• 8.3: The Generalized Stoke's Theorem (6)
• 8.4: True/False Exercises for Chapter 8
• 8.5: Miscellaneous Exercises for Chapter 8

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Vectors
1.1 6 004 006 009 010 016 024
1.2 10 002 004 006 008 014 016 018 024 028 034
1.3 8 002 004 006 008 010 012 014 020
1.4 9 002 004 006 010 014 016 018 026 038
1.5 9 002 006 008 010 012 014 016 020 028
1.6 9 008 014 016 017 018 019 021 022 023
1.7 9 002 004 006 008 010 012 014 016 018
Chapter 2: Differentiation in Several Variables
2.1 10 004 006 008 010 012 014 016 018 036 042
2.2 10 002 006 008 010 012 018 020 034 036 040
2.3 10 002 006 008 012 014 016 020 022 024 030
2.4 10 009 010 011 012 013 014 015 016 017 018
2.5 7 002 004 006 008 016 018 020
2.6 9 002 004 006 008 012 016 018 028 030
Chapter 3: Vector-Valued Functions
3.1 7 002 004 006 008 010 016 026
3.2 7 002 004 006 014 016 024 028
3.3 7 002 004 006 008 010 020 022
3.4 6 002 003 004 008 009 010
Chapter 4: Maxima and Minima in Several Variables
4.1 10 002 004 006 008 010 012 014 016 022 024
4.2 10 004 008 010 012 018 020 030 034 036 040
4.3 7 002 004 006 008 018 020 026
4.4 5 001 004 006 007 008
Chapter 5: Multiple Integration
5.1 10 001 002 004 006 008 009 010 012 013 014
5.2 10 002 004 006 008 009 011 012 014 016 021
5.3 10 002 004 006 007 008 010 012 014 016 018
5.4 10 002 003 004 006 007 012 013 014 016 022
5.5 10 010 012 014 016 018 020 026 028 030 031
5.6 10 002 006 008 010 012 014 016 018 026 030
Chapter 6: Line Integrals
6.1 10 002 004 006 008 010 012 014 016 020 022
6.2 10 001 002 003 004 006 007 008 011 014 016
6.3 10 004 005 006 008 010 012 014 016 018 020
Chapter 7: Surface Integrals and Vector Analysis
7.1 7 002 003 004 019 020 022 023
7.2 10 001 002 005 010 012 014 016 018 020 022
7.3 8 002 004 006 008 011 012 014 016
Chapter 8: Vector Analysis in Higher Dimensions
8.1 10 001 002 003 004 005 006 008 010 011 012
8.2 5 006 007 009 012 013
8.3 6 001 002 003 004 005 006
Total 311