Calculus 8th edition

Textbook Cover

Larson, Hostetler, and Edwards
Publisher: Cengage Learning


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework
Higher Education Single Term $29.95
High School $10.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter P: Preparation for Calculus
    • P.1: Graphs and Models (10)
    • P.2: Linear Models and Rates of Change (10)
    • P.3: Functions and Their Graphs (10)
    • P.4: Fitting Models to Data (4)

  • Chapter 1: Limits and Their Properties
    • 1.1: A Preview of Calculus (3)
    • 1.2: Finding Limits Graphically and Numerically (7)
    • 1.3: Evaluating Limits Analytically (11)
    • 1.4: Continuity and One-Sided Limits (12)
    • 1.5: Infinite Limits (8)

  • Chapter 2: Differentiation
    • 2.1: The Derivative and the Tangent Line Problem (9)
    • 2.2: Basic Differentiation Rules and Rates of Change (11)
    • 2.3: Product and Quotient Rules and Higher-Order Derivatives (11)
    • 2.4: The Chain Rule (9)
    • 2.5: Implicit Differentiation (9)
    • 2.6: Related Rates (6)

  • Chapter 3: Applications of Differentiation
    • 3.1: Extrema on an Interval (7)
    • 3.2: Rolle's Theorem and the Mean Value Theorem (9)
    • 3.3: Increasing and Decreasing Functions and the First Derivative Test (9)
    • 3.4: Concavity and the Second Derivative Test (8)
    • 3.5: Limits at Infinity (11)
    • 3.6: A Summary of Curve Sketching (5)
    • 3.7: Optimization Problems (10)
    • 3.8: Newton's Method (5)
    • 3.9: Differentials (6)

  • Chapter 4: Integration
    • 4.1: Antiderivatives and Indefinite Integration (10)
    • 4.2: Area (7)
    • 4.3: Riemann Sums and Definite Integrals (7)
    • 4.4: The Fundamental Theorem of Calculus (11)
    • 4.5: Integration by Substitution (14)
    • 4.6: Numerical Integration (5)

  • Chapter 5: Logarithmic, Exponential, and Other Transcendental Functions
    • 5.1: The Natural Logarithmic Function: Differentiation (12)
    • 5.2: The Natural Logarithmic Function: Integration (10)
    • 5.3: Inverse Functions (16)
    • 5.4: Exponential Functions: Differentiation and Integration (14)
    • 5.5: Bases Other Than e and Applications (12)
    • 5.6: Inverse Trigonometric Functions: Differentiation (12)
    • 5.7: Inverse Trigonometric Functions: Integration (7)
    • 5.8: Hyperbolic Functions (10)

  • Chapter 6: Differential Equations
    • 6.1: Slope Fields and Euler's Method (7)
    • 6.2: Differential Equations: Growth and Decay (9)
    • 6.3: Separation of Variables and the Logistic Equation (11)
    • 6.4: First-Order Linear Differential Equations (7)

  • Chapter 7: Applications of Integration
    • 7.1: Area of a Region Between Two Curves (10)
    • 7.2: Volume: The Disk Method (9)
    • 7.3: Volume: The Shell Method (6)
    • 7.4: Arc Length and Surfaces of Revolution (7)
    • 7.5: Work (6)
    • 7.6: Moments, Centers of Mass, and Centroids (7)
    • 7.7: Fluid Pressure and Fluid Force (5)

  • Chapter 8: Integration Techniques, L'Hôpital's Rule, and Improper Integrals
    • 8.1: Basic Integration Rules (10)
    • 8.2: Integration by Parts (11)
    • 8.3: Trigonometric Integrals (11)
    • 8.4: Trigonometric Substitution (13)
    • 8.5: Partial Fractions (8)
    • 8.6: Integration by Tables and Other Integration Techniques (8)
    • 8.7: Indeterminate Forms and L'Hôpital's Rule (6)
    • 8.8: Improper Integrals (11)

  • Chapter 9: Infinite Series
    • 9.1: Sequences (13)
    • 9.2: Series and Convergence (14)
    • 9.3: The Integral Test and p-Series (8)
    • 9.4: Comparisons of Series (5)
    • 9.5: Alternating Series (10)
    • 9.6: The Ratio and Root Tests (13)
    • 9.7: Taylor Polynomials and Approximations (9)
    • 9.8: Power Series (10)
    • 9.9: Representation of Functions by Power Series (7)
    • 9.10: Taylor and Maclaurin Series (9)

  • Chapter 10: Conics, Parametric Equations, and Polar Coordinates
    • 10.1: Conics and Calculus (15)
    • 10.2: Plane Curves and Parametric Equations (3)
    • 10.3: Parametric Equations and Calculus (10)
    • 10.4: Polar Coordinates and Polar Graphs (6)
    • 10.5: Area and Arc Length in Polar Coordinates (9)
    • 10.6: Polar Equations of Conics and Kepler's Laws (6)

  • Chapter 11: Vectors and the Geometry of Space
    • 11.1: Vectors in the Plane (12)
    • 11.2: Space Coordinates and Vectors in Space (13)
    • 11.3: The Dot Product of Two Vectors (13)
    • 11.4: The Cross Product of Two Vectors in Space (8)
    • 11.5: Lines and Planes in Space (13)
    • 11.6: Surfaces in Space (6)
    • 11.7: Cylindrical and Spherical Coordinates (9)

  • Chapter 12: Vector-Valued Functions
    • 12.1: Vector-Valued Functions (7)
    • 12.2: Differentiation and Integration of Vector-Valued Functions (11)
    • 12.3: Velocity and Acceleration (6)
    • 12.4: Tangent Vectors and Normal Vectors (8)
    • 12.5: Arc Length and Curvature (8)

  • Chapter 13: Functions of Several Variables
    • 13.1: Introduction to Functions of Several Variables (5)
    • 13.2: Limits and Continuity (6)
    • 13.3: Partial Derivatives (13)
    • 13.4: Differentials (5)
    • 13.5: Chain Rules for Functions of Several Variables (10)
    • 13.6: Directional Derivatives and Gradients (10)
    • 13.7: Tangent Planes and Normal Lines (7)
    • 13.8: Extrema of Functions of Two Variables (5)
    • 13.9: Applications of Extrema of Functions of Two Variables (7)
    • 13.10: Lagrange Multipliers (7)

  • Chapter 14: Multiple Integration
    • 14.1: Iterated Integrals and Area in the Plane (8)
    • 14.2: Double Integrals and Volume (8)
    • 14.3: Change of Variables: Polar Coordinates (8)
    • 14.4: Center of Mass and Moments of Inertia (7)
    • 14.5: Surface Area (5)
    • 14.6: Triple Integrals and Applications (8)
    • 14.7: Triple Integrals in Cylindrical and Spherical Coordinates (8)
    • 14.8: Change of Variables: Jacobians (5)

  • Chapter 15: Vector Analysis
    • 15.1: Vector Fields (7)
    • 15.2: Line Inteegrals (8)
    • 15.3: Conservative Vector Fields and Independence of Path (5)
    • 15.4: Green's Theorem (5)
    • 15.5: Parametric Surfaces (6)
    • 15.6: Surface Integrals (5)
    • 15.7: Divergence Theorem (3)
    • 15.8: Stoke's Theorem (3)

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter P: Preparation for Calculus
P.1 10 001 020 036 050 054 056 064 066 075 076
P.2 10 001 010 018 038 040 048 060 072 078 084
P.3 10 003 006 014 018 024 044 046 064 068 094
P.4 4 001 007 008 010
Chapter 1: Limits and Their Properties
1.1 3 002 002.alt 008
1.2 7 002 012 020 022 028 032 036
1.3 11 006 018 024 032 038 046 056 070 086 088 102
1.4 12 008 012 016 022 038 042 048 052 058 060 070 106
1.5 8 002 012 028 036 046 051 060 062
Chapter 2: Differentiation
2.1 9 008 014 024 038 042 058 074 082 092
2.2 11 006 022 040 050 060 066 090 094 096 104 114
2.3 11 002 012 016 028 046 074 084 092 094 100 116
2.4 9 008 020 030 042 058 062 066 084 088
2.5 9 002 006 010 022 024 030 046 066 076
2.6 6 002 006 014 020 026 034
Chapter 3: Applications of Differentiation
3.1 7 002 004 008 014 024 040 060
3.2 9 004 008 012 030 040 044 052 060 072
3.3 9 004 012 026 036 042 064 076 080 086
3.4 8 004 014 018 022 024 028 062 068
3.5 11 006 008 016 020 024 030 034 040 086 088 094
3.6 5 002 004 006 054 068
3.7 10 004 010 012 016 018 022 024 040 048 054
3.8 5 016 020 028 036 040
3.9 6 002 010 016 026 028 042
Chapter 4: Integration
4.1 10 008 016 030 038 058 064 070 072 080 082
4.2 7 002 010 030 032 044 066 082
4.3 7 006 014 022 026 034 042 048
4.4 11 008 024 028 036 040 046 050 062 068 090 100
4.5 14 002 010 018 026 036 038 046 052 062 072 084 102 112 120
4.6 5 030 034 046 050 052
Chapter 5: Logarithmic, Exponential, and Other Transcendental Functions
5.1 12 008 010 018 032 040 042 048 058 064 078 088 106
5.2 10 004 014 022 028 032 034 054 062 068 092
5.3 16 010 012 016 020 024 026 028 032 040 045 046 062 074 083 084 090
5.4 14 006 014 022 024 032 034 040 046 052 060 062 088 108 120
5.5 12 002 008 018 026 040 048 050 056 060 062 068 092
5.6 12 004 006 016 018 032 044 050 054 058 060 092 100
5.7 7 004 010 018 024 044 054 066
5.8 10 004 014 020 026 040 052 060 070 078 082
Chapter 6: Differential Equations
6.1 7 018 024 026 032 040 050 054
6.2 9 002 010 018 024 028 042 050 056 062
6.3 11 002 010 016 030 038 044 060 068 078 080 080.alt
6.4 7 008 020 024 028 036 042 044
Chapter 7: Applications of Integration
7.1 10 014 018 030 044 060 064 066 078 086 088
7.2 9 004 008 012 018 020 024 032 034 050
7.3 6 002 010 014 022 028 042
7.4 7 004 010 024 030 034 064 066
7.5 6 002 010 016 020 026 034
7.6 7 002 008 010 016 028 036 050
7.7 5 004 006 014 016 026
Chapter 8: Integration Techniques, L'Hôpital's Rule, and Improper Integrals
8.1 10 002 008 018 026 038 044 060 070 094 098
8.2 11 002 012 022 028 040 050 058 060 068 096 108
8.3 11 004 008 016 022 026 038 046 054 066 088 092
8.4 13 004 008 010 016 020 022 030 038 044 050 054 068 080
8.5 8 004 008 018 028 032 042 058 062
8.6 8 002 006 010 020 030 040 066 086
8.7 6 002 008 014 024 034 086
8.8 11 004 006 018 028 036 046 056 062 070 074 080
Chapter 9: Infinite Series
9.1 13 004 010 014 018 024 026 034 040 050 060 068 086 102
9.2 14 002 006 017 020 036 040 050 056 060 082 096 104 112 116
9.3 8 002 016 028 034 037 076 078 084
9.4 5 004 014 016 028 032
9.5 10 001 014 016 028 032 048 052 062 076 088
9.6 13 005 016 024 032 042 050 054 066 070 078 084 088 102
9.7 9 002 014 022 026 030 040 042 052 058
9.8 10 002 008 014 024 034 036 038 046 054 084
9.9 7 004 006 012 016 026 032 066
9.10 9 002 010 018 024 034 043 058 060 072
Chapter 10: Conics, Parametric Equations, and Polar Coordinates
10.1 15 002 006 012 020 024 026 032 038 040 046 060 070 074 082 094
10.2 3 040 042 072
10.3 10 002 006 016 024 038 044 054 064 070 092
10.4 6 024 026 028 036 060 066
10.5 9 002 008 016 018 024 038 042 046 066
10.6 6 008 014 024 032 060 064
Chapter 11: Vectors and the Geometry of Space
11.1 12 024 030 034 040 042 048 054 056 066 070 082 092
11.2 13 008 016 024 026 032 036 038 042 060 066 072 082 100
11.3 13 002 008 010 014 018 020 028 028.alt 036 042 046 060 074
11.4 8 002 008 012 028 034 042 046 048
11.5 13 018 022 026 038 044 048 052 056 076 090 094 096 110
11.6 6 004 006 046 058 060 064
11.7 9 004 010 016 032 038 044 068 090 092
Chapter 12: Vector-Valued Functions
12.1 7 002 008 018 048 058 070 076
12.2 11 012 018 020 026 030 040 046 050 056 058 066
12.3 6 010 016 020 026 034 050
12.4 8 006 012 024 030 032 036 044 066
12.5 8 008 012 022 028 032 040 044 072
Chapter 13: Functions of Several Variables
13.1 5 006 016 046 068 082
13.2 6 006 012 026 042 048 060
13.3 13 008 018 028 030 034 038 046 050 052 060 066 094 100
13.4 5 004 014 018 032 040
13.5 10 010 014 016 020 024 028 034 040 052 056
13.6 10 002 012 014 018 022 028 032 040 056 064
13.7 7 006 014 016 022 030 042 050
13.8 5 032 034 046 048 054
13.9 7 002 004 006 010 016 022 036
13.10 7 002 012 014 016 028 034 040
Chapter 14: Multiple Integration
14.1 8 002 010 018 024 026 036 062 080
14.2 8 002 012 014 022 030 042 050 054
14.3 8 006 010 018 022 030 034 042 052
14.4 7 004 012 020 028 032 040 046
14.5 5 002 010 016 020 026
14.6 8 008 016 018 024 034 052 064 070
14.7 8 006 010 014 022 024 032 034 038
14.8 5 002 012 016 018 030
Chapter 15: Vector Analysis
15.1 7 002 024 034 040 044 052 058
15.2 8 008 012 014 016 022 030 060 064
15.3 5 006 012 016 020 036
15.4 5 008 014 020 022 034
15.5 6 002 020 028 032 038 050
15.6 5 002 012 014 020 036
15.7 3 006 016 018
15.8 3 004 014 020
Total 944