Calculus: Early Transcendental Functions 3rd edition

Textbook Cover

Robert T. Smith and Roland B. Minton
Publisher: McGraw-Hill Education


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework
Higher Education Single Term N/A
High School N/A

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter A: Algebra Review
    • A.1: The Cartesian Coordinate Plane (52)
    • A.2: Linear and Quadratic Functions (36)
    • A.3: Polynomial Functions (31)
    • A.4: Rational Functions (46)
    • A.5: Further Topics in Functions (53)
    • A.6: Exponential and Logarithmic Functions (46)
    • A.7: Introduction to Conics (17)
    • A.8: Systems of Equations and Matrices (24)
    • A.9: Sequences and the Binomial Theorem (24)

  • Chapter T: Trigonometry Review
    • T.1: Foundations of Trigonometry (95)
    • T.2: Applications of Trigonometry (5)

  • Chapter 0: Preliminaries
    • 0.1: Polynomials and Rational Functions (10)
    • 0.2: Graphing Calculators and Computer Algebra Systems
    • 0.3: Inverse Functions (10)
    • 0.4: Trigonometric and Inverse Trigonometric Functions (4)
    • 0.5: Exponential and Logarithmic Functions (13)
    • 0.6: Transformations of Functions (14)

  • Chapter 1: Limits and Continuity
    • 1.1: Introduction to Tangent Lines and Arc Lengths (2)
    • 1.2: Introduction to Limits (4)
    • 1.3: Computation of Limits (13)
    • 1.4: Continuity (11)
    • 1.5: Limits Involving Infinity (34)
    • 1.6: Formal Definition of the Limit (3)
    • 1.7: Limits and Loss-of-Significance Errors

  • Chapter 2: Differentiation
    • 2.1: Tangent Lines and Velocity (4)
    • 2.2: The Derivative
    • 2.3: The Power, Sum, Difference, and Constant Multiple Rules of Differentiation (15)
    • 2.4: The Product and Quotient Rules (8)
    • 2.5: The Chain Rule (5)
    • 2.6: Derivatives of Trigonometric Functions (6)
    • 2.7: Derivatives of Exponential and Logarithmic Functions (26)
    • 2.8: Implicit Differentiation and Inverse Trigonometric Functions (18)
    • 2.9: The Mean Value Theorem (10)

  • Chapter 3: Applications of Differentiation
    • 3.1: Linear Approximations and Newton's Method (27)
    • 3.2: Indeterminate Forms and L'Hopital's Rule (20)
    • 3.3: Maximum and Minimum Values (11)
    • 3.4: Increasing and Decreasing Functions (9)
    • 3.5: Concavity and the Second Derivative Test (22)
    • 3.6: Curve Sketching using the First and Second Derivatives (15)
    • 3.7: Optimization (18)
    • 3.8: Related Rates (14)
    • 3.9: Applications of Rates of Change (3)

  • Chapter 4: Integration
    • 4.1: Antiderivatives (22)
    • 4.2: Sums and Sigma Notation (1)
    • 4.3: Area (7)
    • 4.4: The Definite Integral (15)
    • 4.5: The Fundamental Theorem of Calculus (40)
    • 4.6: Integration by Substitution (34)
    • 4.7: Numerical Integration (16)
    • 4.8: The Integral Definition of the Natural Logarithm (1)

  • Chapter 5: Applications of the Definite Integral
    • 5.1: Area Between Curves (19)
    • 5.2: Volumes by Cross-Sections (22)
    • 5.3: Volumes by Cylindrical Shells (18)
    • 5.4: Arc Length and Surface Area (26)
    • 5.5: Projectile Motion (5)
    • 5.6: Application of Integration (35)
    • 5.7: Probability (6)

  • Chapter 6: Integration Techniques
    • 6.1: Integration Review (2)
    • 6.2: Integration by Parts (27)
    • 6.3: Trigonometric Integration (42)
    • 6.4: Partial Fractions (23)
    • 6.5: Integration Tables and Computer Algebra Systems (13)
    • 6.6: Improper Integrals (15)

  • Chapter 7: First-Order Differential Equations
    • 7.1: Introduction to Differential Equations: Growth and Decay, Newton's Law of Cooling, Compound Interest (4)
    • 7.2: Separable Differential Equations (7)
    • 7.3: Direction Fields and Euler's Method (1)
    • 7.4: Systems of First-Order Differential Equations

  • Chapter 8: Infinite Series
    • 8.1: Introduction to Sequences (23)
    • 8.2: Infinite Series (18)
    • 8.3: The Integral Test and Comparison Tests (40)
    • 8.4: Alternating Series (7)
    • 8.5: Absolute Convergence and the Ratio Test (44)
    • 8.6: Power Series (28)
    • 8.7: Taylor Series (22)
    • 8.8: Applications of Taylor Series (3)
    • 8.9: Fourier Series (2)

  • Chapter 9: Parametric Equations and Polar Coordinates
    • 9.1: Plane Curves and Parametric Equations (17)
    • 9.2: Calculus and Parametric Equations (18)
    • 9.3: Arc Length and Surface Area in Parametric Equations (13)
    • 9.4: Polar Coordinates (22)
    • 9.5: Calculus and Polar Coordinates (20)
    • 9.6: Conic Sections (14)
    • 9.7: Conic Sections in Polar Coordinates (6)

  • Chapter 10: Vectors and the Geometry of Space
    • 10.1: Vectors in the Plane
    • 10.2: Vectors in Space
    • 10.3: The Dot Product
    • 10.4: The Cross Product
    • 10.5: Lines and Planes in Space
    • 10.6: Surfaces in Space

  • Chapter 11: Vector-Valued Functions
    • 11.1: Vector-Valued Functions
    • 11.2: The Calculus of Vector-Valued Functions
    • 11.3: Motion in Space
    • 11.4: Curvature
    • 11.5: Tangent and Normal Vectors
    • 11.6: Parametric Surfaces

  • Chapter 12: Functions of Several Variables and Partial Differentiation
    • 12.1: Functions of Several Variables
    • 12.2: Limits and Continuity
    • 12.3: Partial Derivatives
    • 12.4: Tangent Planes and Linear Approximations
    • 12.5: The Chain Rule
    • 12.6: The Gradient and Directional Derivatives
    • 12.7: Extrema of Functions of Several Variables
    • 12.8: Constrained Optimization and Lagrange Multipliers

  • Chapter 13: Multiple Integrals
    • 13.1: Double Integrals
    • 13.2: Area, Volume, and Center of Mass
    • 13.3: Double Integrals in Polar Coordinates
    • 13.4: Surface Area
    • 13.5: Triple Integrals
    • 13.6: Cylindrical Coordinates
    • 13.7: Spherical Coordinates
    • 13.8: Change of Variables in Multiple Integrals

  • Chapter 14: Vector Calculus
    • 14.1: Vector Fields
    • 14.2: Line Integrals
    • 14.3: Independence of Path and Conservative Vector Fields
    • 14.4: Green's Theorem
    • 14.5: Curl and Divergence
    • 14.6: Surface Integrals
    • 14.7: The Divergence Theorem
    • 14.8: Stokes' Theorem
    • 14.9: Applications of Vector Calculus

  • Chapter 15: Second-Order Differential Equations
    • 15.1: Second-Order Equations with Constant Coefficients
    • 15.2: Nonhomogeneous Equations
    • 15.3: Applications of Second-Order Equations
    • 15.4: Power Series Solutions of Differential Equations

The WebAssign questions for this textbook are from an independent collection of questions developed by a team of experienced mathematics instructors. These class-tested and peer-reviewed questions, covering the main topics in calculus, have been correlated as closely as possible to the appropriate chapters in this textbook.

Question Collection Features:

  • Complete question coverage of all calculus concepts
  • Detailed worked-out solutions
  • Interactive Tutorials
  • Complete coverage of precalculus concepts

Question Group Key
Tutorial - Pop-up Tutorial
Tutorial.SA - Stand-alone Tutorial


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 0: Preliminaries
0.1 10 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial 509.XP.Tutorial 510.XP.Tutorial
0.3 10 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial
0.4 4 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP.Tutorial
0.5 13 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP.Tutorial 512.XP.Tutorial 513.XP.Tutorial
0.6 14 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP.Tutorial
Chapter A: Algebra Review
A.1 52 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP
A.2 36 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP
A.3 31 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP
A.4 46 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP
A.5 53 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP
A.6 46 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP
A.7 17 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP
A.8 24 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP
A.9 24 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP
Chapter T: Trigonometry Review
T.1 95 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP 554.XP 555.XP 556.XP 557.XP 558.XP 559.XP 560.XP 561.XP 562.XP 563.XP 564.XP 565.XP 566.XP 567.XP 568.XP 569.XP 570.XP 571.XP 572.XP 573.XP 574.XP 575.XP 576.XP 577.XP 578.XP 579.XP 580.XP 581.XP 582.XP 583.XP 584.XP 585.XP 586.XP 587.XP 588.XP 589.XP 590.XP 591.XP 592.XP 593.XP 594.XP 595.XP
T.2 5 501.XP 502.XP 503.XP 504.XP 505.XP
Chapter 1: Limits and Continuity
1.1 2 501.XP.Tutorial 502.XP.Tutorial
1.2 4 501.XP.Tutorial 502.XP 503.XP.Tutorial 504.XP.Tutorial
1.3 13 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP 510.XP.Tutorial 511.XP.Tutorial 512.XP.Tutorial 513.XP.Tutorial
1.4 11 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP.Tutorial
1.5 34 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP.Tutorial 523.XP 524.XP.Tutorial 525.XP 526.XP.Tutorial 527.XP 528.XP 529.XP.Tutorial 530.XP 531.XP 532.XP.Tutorial 533.XP.Tutorial 534.XP.Tutorial
1.6 3 501.XP 502.XP 503.XP.Tutorial
Chapter 2: Differentiation
2.1 4 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP
2.3 15 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP.Tutorial 513.XP.Tutorial 514.XP.Tutorial 515.XP.Tutorial
2.4 8 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial
2.5 5 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial
2.6 6 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP.Tutorial 506.XP.Tutorial
2.7 26 501.XP 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP.Tutorial 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP.Tutorial 525.XP 526.XP.Tutorial
2.8 18 501.XP 502.XP.Tutorial 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP.Tutorial 511.XP.Tutorial 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP.Tutorial 518.XP.Tutorial
2.9 10 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP
Chapter 3: Applications of Differentiation
3.1 27 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP.Tutorial 514.XP.Tutorial 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP.Tutorial 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP.Tutorial 526.XP.Tutorial 527.XP.Tutorial
3.2 20 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP.Tutorial 519.XP.Tutorial 520.XP.Tutorial
3.3 11 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP.Tutorial
3.4 9 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP.Tutorial 509.XP.Tutorial
3.5 22 501.XP 502.XP.Tutorial 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP.Tutorial
3.6 15 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial
3.7 18 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP.Tutorial 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP.Tutorial 518.XP.Tutorial
3.8 14 501.XP 502.XP.Tutorial 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP.Tutorial
3.9 3 501.XP 502.XP 503.XP
Chapter 4: Integration
4.1 22 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP.Tutorial 512.XP 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP 518.XP 519.XP.Tutorial 520.XP.Tutorial 521.XP 522.XP.Tutorial
4.2 1 501.XP.Tutorial
4.3 7 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP.Tutorial
4.4 15 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP.Tutorial 514.XP.Tutorial 515.XP.Tutorial
4.5 40 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP.Tutorial 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP.Tutorial 533.XP 534.XP 535.XP.Tutorial 536.XP 537.XP.Tutorial 538.XP.Tutorial 539.XP.Tutorial 540.XP.Tutorial
4.6 34 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP.Tutorial 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP.Tutorial 525.XP 526.XP.Tutorial 527.XP.Tutorial 528.XP 529.XP 530.XP.Tutorial 531.XP.Tutorial 532.XP.Tutorial 533.XP.Tutorial 534.XP.Tutorial
4.7 16 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP.Tutorial
4.8 1 501.XP.Tutorial
Chapter 5: Applications of the Definite Integral
5.1 19 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP.Tutorial 518.XP.Tutorial 519.XP.Tutorial
5.2 22 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP.Tutorial 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP.Tutorial 520.XP.Tutorial 521.XP.Tutorial 522.XP.Tutorial
5.3 18 501.XP 502.XP.Tutorial 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP.Tutorial 517.XP.Tutorial 518.XP.Tutorial
5.4 26 501.XP 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP.Tutorial 517.XP.Tutorial 518.XP 519.XP.Tutorial 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP.Tutorial 526.XP.Tutorial
5.5 5 501.XP 502.XP 503.XP 504.XP 505.XP
5.6 35 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP.Tutorial 516.XP.Tutorial 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP.Tutorial 529.XP.Tutorial 530.XP.Tutorial 531.XP.Tutorial 532.XP.Tutorial 533.XP.Tutorial 534.XP.Tutorial 535.XP.Tutorial
5.7 6 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.Tutorial
Chapter 6: Integration Techniques
6.1 2 501.XP 502.XP
6.2 27 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP.Tutorial 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP.Tutorial 526.XP.Tutorial 527.XP.Tutorial
6.3 42 501.XP 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP.Tutorial 525.XP 526.XP.Tutorial 527.XP 528.XP.Tutorial 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP.Tutorial 539.XP.Tutorial 540.XP.Tutorial 541.XP.Tutorial 542.XP.Tutorial
6.4 23 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP.Tutorial
6.5 13 501.XP.Tutorial 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP.Tutorial 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial
6.6 15 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial
Chapter 7: First-Order Differential Equations
7.1 4 501.XP.Tutorial 502.XP 503.XP.Tutorial 504.XP.Tutorial
7.2 7 501.XP.Tutorial 502.XP.Tutorial 503.XP.Tutorial 504.XP.Tutorial 505.XP.Tutorial 506.XP.Tutorial 507.XP.Tutorial
7.3 1 501.XP.Tutorial
Chapter 8: Infinite Series
8.1 23 502.XP 503.XP.Tutorial 504.XP.Tutorial 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP
8.2 18 501.XP.Tutorial 502.XP 503.XP 504.XP.Tutorial 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP.Tutorial 518.XP.Tutorial
8.3 40 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP.Tutorial 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP.Tutorial 527.XP 528.XP 529.XP 530.XP 531.XP.Tutorial 532.XP 533.XP 534.XP.Tutorial 535.XP 536.XP 537.XP 538.XP 539.XP.Tutorial 540.XP.Tutorial
8.4 7 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial
8.5 44 501.XP 502.XP 503.XP 504.XP.Tutorial 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP.Tutorial 526.XP.Tutorial 527.XP 528.XP 529.XP.Tutorial 530.XP 531.XP.Tutorial 532.XP 533.XP 534.XP 535.XP.Tutorial 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP.Tutorial 542.XP.Tutorial 543.XP.Tutorial 544.XP.Tutorial
8.6 28 501.XP 502.XP.Tutorial 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP.Tutorial 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP.Tutorial 528.XP.Tutorial
8.7 22 501.XP.Tutorial 502.XP.Tutorial 503.XP 504.XP 505.XP 506.XP.Tutorial 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP.Tutorial 517.XP 518.XP 519.XP.Tutorial 520.XP.Tutorial 521.XP.Tutorial 522.XP.Tutorial
8.8 3 501.XP 502.XP 503.XP
8.9 2 501.XP 502.XP
Chapter 9: Parametric Equations and Polar Coordinates
9.1 17 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP.Tutorial 513.XP 514.XP.Tutorial 515.XP 516.XP.Tutorial 517.XP.Tutorial
9.2 18 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP.Tutorial 512.XP.Tutorial 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP.Tutorial
9.3 13 501.XP 502.XP 503.XP.Tutorial 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP.Tutorial
9.4 22 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP.Tutorial 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP.Tutorial 521.XP.Tutorial 522.XP.Tutorial
9.5 20 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.Tutorial 508.XP 509.XP 510.XP.Tutorial 511.XP 512.XP 513.XP 514.XP 515.XP.Tutorial 516.XP 517.XP 518.XP 519.XP.Tutorial 520.XP.Tutorial
9.6 14 501.XP 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.Tutorial 514.XP.Tutorial
9.7 6 501.XP.Tutorial 502.XP 503.XP 504.XP 505.XP.Tutorial 506.XP
Chapter 10: Vectors and the Geometry of Space
10 0  
Chapter 11: Vector-Valued Functions
11 0  
Chapter 12: Functions of Several Variables and Partial Differentiation
12 0  
Total 1476