Applied Calculus for the Managerial, Life, and Social Sciences 10th edition

Textbook Cover

Soo T. Tan
Publisher: Cengage Learning

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

personal study plan

Personal Study Plan Module

Your students can use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

course pack

Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


  • Tan Applied Calculus 10e

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A $100.00
High School $21.50 $35.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Preliminaries
    • 1.1: Precalculus Review I (77)
    • 1.2: Precalculus Review II (50)
    • 1.3: The Cartesian Coordinate System (38)
    • 1.4: Straight Lines (50)
    • 1: Concept Review Questions
    • 1: Review Exercises (30)

  • Chapter 2: Functions, Limits, and the Derivative
    • 2.1: Functions and Their Graphs (54)
    • 2.2: The Algebra of Functions (39)
    • 2.3: Functions and Mathematical Models (43)
    • 2.4: Limits (48)
    • 2.5: One-Sided Limits and Continuity (48)
    • 2.6: The Derivative (37)
    • 2: Concept Review Questions
    • 2: Review Exercises (31)

  • Chapter 3: Differentiation
    • 3.1: Basic Rules of Differentiation (45)
    • 3.2: The Product and Quotient Rules (37)
    • 3.3: The Chain Rule (45)
    • 3.4: Marginal Functions in Economics (35)
    • 3.5: Higher-Order Derivatives (37)
    • 3.6: Implicit Differentiation and Related Rates (36)
    • 3.7: Differentials (35)
    • 3: Concept Review Questions
    • 3: Review Exercises (32)

  • Chapter 4: Applications of the Derivative
    • 4.1: Applications of the First Derivative (77)
    • 4.2: Applications of the Second Derivative (45)
    • 4.3: Curve Sketching (44)
    • 4.4: Optimization I (43)
    • 4.5: Optimization II (37)
    • 4: Concept Review Questions
    • 4: Review Exercises (33)

  • Chapter 5: Exponential and Logarithmic Functions
    • 5.1: Exponential Functions (45)
    • 5.2: Logarithmic Functions (39)
    • 5.3: Compound Interest (36)
    • 5.4: Differentiation of Exponential Functions (40)
    • 5.5: Differentiation of Logarithmic Functions (41)
    • 5.6: Exponential Functions as Mathematical Models (34)
    • 5: Concept Review Questions
    • 5: Review Exercises (27)

  • Chapter 6: Integration
    • 6.1: Antiderivatives and the Rules of Integration (66)
    • 6.2: Integration by Substitution (39)
    • 6.3: Area and the Definite Integral (18)
    • 6.4: The Fundamental Theorem of Calculus (42)
    • 6.5: Evaluating Definite Integrals (47)
    • 6.6: Area Between Two Curves (38)
    • 6.7: Applications of the Definite Integral to Business and Economics (31)
    • 6: Concept Review Questions
    • 6: Review Exercises (35)

  • Chapter 7: Additional Topics in Integration
    • 7.1: Integration by Parts (40)
    • 7.2: Integration Using Tables of Integrals (39)
    • 7.3: Numerical Integration (40)
    • 7.4: Improper Integrals (43)
    • 7.5: Volumes of Solids of Revolution (33)
    • 7: Concept Review Questions
    • 7: Review Exercises (23)

  • Chapter 8: Calculus of Several Variables
    • 8.1: Functions of Several Variables (46)
    • 8.2: Partial Derivatives (44)
    • 8.3: Maxima and Minima of Functions of Several Variables (33)
    • 8.4: The Method of Least Squares (28)
    • 8.5: Constrained Maxima and Minima and the Method of Lagrange Multipliers (35)
    • 8.6: Total Differentials (37)
    • 8.7: Double Integrals (27)
    • 8.8: Applications of Double Integrals (28)
    • 8: Concept Review Questions
    • 8: Review Exercises (24)

  • Chapter 9: Differential Equations
    • 9.1: Differential Equations (16)
    • 9.2: Separation of Variables (35)
    • 9.3: Applications of Separable Differential Equations (31)
    • 9.4: Approximate Solutions of Differential Equations (16)
    • 9: Concept Review Questions
    • 9: Review Exercises (25)

  • Chapter 10: Probability and Calculus
    • 10.1: Probability Distributions of Random Variables (61)
    • 10.2: Expected Value and Standard Deviation (32)
    • 10.3: Normal Distributions (34)
    • 10: Concept Review Questions
    • 10: Review Exercises (28)

  • Chapter 11: Taylor Polynomials and Infinite Series
    • 11.1: Taylor Polynomials (34)
    • 11.2: Infinite Sequences (45)
    • 11.3: Infinite Series (39)
    • 11.4: Series with Positive Terms (39)
    • 11.5: Power Series and Taylor Series (32)
    • 11.6: More on Taylor Series (30)
    • 11.7: Newton's Method (37)
    • 11: Concept Review Questions
    • 11: Review Exercises (40)

  • Chapter 12: Trigonometric Functions
    • 12.1: Measurement of Angles (26)
    • 12.2: The Trigonometric Functions (40)
    • 12.3: Differentiation of Trigonometric Functions (45)
    • 12.4: Integration of Trigonometric Functions (35)
    • 12: Concept Review Questions
    • 12: Review Exercises (32)


Applied Calculus for the Managerial, Life, and Social Sciences, 10th Edition, by Soo Tan balances applications, pedagogy, and technology to provide students the context they need to stay motivated in the course and interested in the material. Accessible for majors and non-majors alike, the text uses an intuitive approach that introduces abstract concepts through examples drawn from common, real-life experiences to which students can relate. It also draws applications from readers' fields of interest. The WebAssign component for this title features an eBook, lecture videos and a Course Pack of ready-made assignments.

Features:
  • Read It links under each question quickly jump to the corresponding section of a complete eBook.
  • Watch It links provide step-by-step instruction with short, engaging videos that are ideal for visual learners.
  • Master It Tutorials show students how to solve a similar problem in multiple steps by providing direction along with derivation so students understand the concepts and reasoning behind the problem solving.
  • Course Packs with ready-to-use assignments were built by subject matter experts specifically for this textbook to save you time, and can be easily customized to meet your teaching goals.
  • A Personal Study Plan lets your students use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Preliminaries
1.R 30 001 002 004 006 008 010 011 012 013 014 016 018 020 022 024 026 028 030 032 034 036 038 040 043 045 047 049 051 058 059
1.1 77 008 010 011 012 013 014 015 016 018 020 022 023 024 025 026 028 030 032 033 034 035 036 038 040 041 042 044 046 047 048 050 052 054 056 058 060 064 066 068 070 072 074 076 077 078 080 082 086 088 090 092 094 096 100 102 104 108 110 112 114 115 116 118 120 122 126 128 130 132 134 135 136 137 138 140 143 147
1.2 50 002 004 006 008 009 010 012 014 016 017 020 022 026 028 030 032 033 036 038 040 042 044 046 048 050 052 054 056 058 060 061 062 064 066 068 072 076 078 080 081 082 084 086 087 088 089 090 092 094 096
1.3 38 001 002 004 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 026 027 028 029 030 032 034 036 037 039 040 042 043 044 048 050
1.4 50 001 002 004 006 007 008 010 012 013 014 016 017 018 020 022 024 025 026 028 029 030 031 032 034 036 038 040 042 044 045 046 050 052 054 056 057 058 060 062 064 065 066 068 072 074 076 080 084 501.XP 502.XP
Chapter 2: Functions, Limits, and the Derivative
2.R 31 002 003 007 010 011 013 015 017 019 021 023 027 028 029 031 032 034 037 039 041 043 045 047 048 049 050 056 057 058 059 061
2.1 54 002 004 006.MI 006.MI.SA 008 010 012 014 015 016 017 018 019 020 022 023 024 026 028 030 031 032 034 036 037 038 039 040 043 044 045 046 048 050 051 054 056 057 060 061 066 067 069 072 074 078 079 080 081 084 088 091 093 501.XP
2.2 39 002 004 006 007 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 040 044 046 048.MI 048.MI.SA 050 052 053 054 055 056 057 058 059 064 065 068 070 074 501.XP
2.3 43 002 004 006 007 008 010 011 012 014 016 017 018 020 026 032 033 036 041 042 046 052 054 058 060 062 064 066 068 072 074 076.MI 076.MI.SA 078 079 080 082 084 086 088 501.XP 502.XP 503.XP 504.XP
2.4 48 002 004 006 008 010 014.MI 014.MI.SA 015 016 018 020 023 024 025 026 028 029 030 031 032 034 036 038 041 042 043 044 048 050 052 054 056 062 064 066 069 070 072 074 076 078 083 084 086 087 088 090 092
2.5 48 002 004 006 008 009 011 012 016 020 022 024 025 026 028 030 032 034 036 038 040 044 045 046 047 048 050 052 054 056 057 058 060 063 065 066 067 068 069 070 071 074 080 081 084 086 092 095 098
2.6 37 001 002 004 008 009 010 012 014 015 016.MI 016.MI.SA 018 020 022 024 025 026 028 030 031 032 033 034 035 036 038 040 047 048 050 052 053 054 056 058 059 060
Chapter 3: Differentiation
3.R 32 002 004 006 008.MI 010 012 014 016 018 020 022 024 026 028 030 032.MI 034 036 038 040 042 044 050 051 054 056 058 061 067 071 074 501.XP
3.1 45 001 002 004 005 006 007 008 010 011 012 013 014 015 016 018 019 020 022 023 024 025 026 028 029 030 033 036 037 040 042 044 046 050 051 052 055 058 060 061 066 067 069 071 074 501.XP
3.2 37 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 043 046 047 048 050 052 054 056 057 058 059 060 061 064 070 072
3.3 45 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 044 046 048 050 052 054 056 058.MI 058.MI.SA 063 064 067 069 070 072 073 074 076 078 082 083 086 090 501.XP 502.XP
3.4 35 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017.MI 017.MI.SA 018 019 020 021 022 027 028 029 030 031 035 036 037 038 039 040 042 083 501.XP
3.5 37 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 024 026 027 028 029 030 034 035 036 038 039 040 041 042 043 045
3.6 36 002 004 005 006 008 010 012 014 016 018 019 020 022 024 026 028 030 032 034 036 038 040 041 042 044 046 050 052 054 056 058 060 061 062 064 066
3.7 35 002 003 004 005 006 007 008 009 010 011 012 013 014 016 018 020 022 024 026 028 030 031 032 033 034 035 036 038 040 042 045 046 048 049 050
Chapter 4: Applications of the Derivative
4.R 33 002 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 039 040 041 042 043 044 045 046 047 048 049 051 054 055 056 057 501.XP
4.1 77 002 003 006 007 009 012 013 014 015 016 017 018 019 020 021 023 024.MI 024.MI.SA 025 026 027 028 029 030 031 032 033 034 035 037 038 039 042 043 044 045 046 047 048 051 052 053 054 055 056 057 058 059 061 062 064 065 066 067 068 069 070 071 073 075 076 077 078.MI 078.MI.SA 079 081 083 084 087 090 091 092 096 097 099 102 106
4.2 45 004 006 008 012 014 015 017 019 021 022 023 030 032 034.MI 034.MI.SA 036 038 040 042 044 046 048 050 052.MI 052.MI.SA 054 056 058 060 062 064 068 072 076 083 090 093 094 096 098 099 105 501.XP 502.XP 503.XP
4.3 44 001 002 004 006 008 009 010 012 014 016 018 020.MI 020.MI.SA 022 024 026 028 029 031 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 065 066 067 068 069 070 071 072 501.XP
4.4 43 002 003 004 006 008 010 012 014 016 018.MI 018.MI.SA 020 024 026 028 030 032 036 038 040 042 043 045.MI 045.MI.SA 046 047 048 049 050 051 053 055 056 057 058 059 060 065 069 072 076 077 501.XP
4.5 37 001 002 003 004 005 006.MI 006.MI.SA 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036
Chapter 5: Exponential and Logarithmic Functions
5.R 27 001 004 008 009 011 012 013 014 016 018 020 022 024 026 028 030 032 033 034 035 036 037 046 048 053 059 060
5.1 45 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020.MI 020.MI.SA 021 022 023 024 026 027 028 030 031 032 033 034 036 037 045 046 047 048 050 051 501.XP 502.XP 503.XP 504.XP
5.2 39 002.MI 002.MI.SA 004.MI 006.MI 006.MI.SA 008 010 012 013 014 016 018.MI 018.MI.SA 020 022 024 026 028 030 032 034 036 038 040 042 044 045 046 047 048 050 051 052 055 056 057 062 063 501.XP
5.3 36 001 002 003 004 005 006 007 008 009 010 012 014 015 017 018 019 021 022 023 024 025 026 027 029 030 031 040 042 045 046 048 049 051 052 054 058
5.4 40 002 004 006 008 010 012 014 016 018 020 022.MI 022.MI.SA 024 026 028 029 030 032 034 036 038 040 042 044 046 047 048 050 059 060 062 069 071 074 078 079 085 087 089 092
5.5 41 002 004 006 008 010 012 014 016 018 020 024 026 028 030 032 036 038 040 042 044 046 048 050 051 054 056 058 060 062 064 072 073 075 076 078 080 085 089 098 501.XP 502.XP
5.6 34 001 002 003 004 005 006.MI 006.MI.SA 007 008 009 010 011 012 013 014 015 016 018 019 020 021 022 023 024 026 027 028 029 030 031 032 033 038 501.XP
Chapter 6: Integration
6.R 35 001 002 003 004 005 006 007 008 010 011 012 014 016 018 020 021 022 024 025 026 028 032 041 042 044 046 047 049 052 053 055 060 063 064 069
6.1 66 001 002 003 004 005 006 007 009 010 011 012 013 014 015 016 017 018 019 020 022 024 025 026 027 028 029 030 032 034 036 038 040 041 042.MI 042.MI.SA 044 046 047 052 053 054 056 057 060 061 062 064 067 068 070.MI 070.MI.SA 073 074 075 076 082 083 088 089 090 092 094 095 097 501.XP 502.XP
6.2 39 001 002 003 004 006 008 010 012 014 015 016 018 020 022 024 026 028 030 032 034 036 038.MI 038.MI.SA 039 040 042 044 045 046 048 051 054 055 056 059 060 061 062 067
6.3 18 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018
6.4 42 002 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 020 022 023 024 025 026 028 030 032.MI 032.MI.SA 033 034 036 038 040 043 044 045 046 053 057 059 062 501.XP 502.XP 503.XP
6.5 47 001 002 003 004 005 006 007 008.MI 008.MI.SA 009 010 011 012 013 014 015 016 017 018 019 020 022 023 024 026 028 029 031 033 036 038 040 042 044 045 046 047 048 049 050 051 052 054 060 061 078 080
6.6 38 002 003 004 006 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 028 030 032 034 036 038 040.MI 040.MI.SA 042 043 044 045 046 048 052 054
6.7 31 001 002 003 004 005 006 007 008 009 010 011 012 014 015 016 017 018.MI 018.MI.SA 020 021 022 023 024 025 026 027 028 031 032 033 034
Chapter 7: Additional Topics in Integration
7.R 23 001 002 003 004 005 006 009 010 012 013 014 015 016 017 018 019 020 021 022 023 024 027 028
7.1 40 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 024 026 028 030 032 033 034 036 037 038 039 040 042 043 044 051 052 057 058 060
7.2 39 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 028 029 030 032 033 034 035 036 037 038 039 042 043
7.3 40 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 040 042 043 044 049 051 501.XP
7.4 43 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 038 040 043 044 046 047 048 049 051 057
7.5 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033
Chapter 8: Calculus of Several Variables
8.R 24 001 002 012 014 016 018 019 020 022 024 026 028 030 032 034 036 038 039 048 051 053 054 057 061
8.1 46 001 002 003 004 005 006 007 008.MI 008.MI.SA 009 010 012 013 014 015 016 017 018.MI 018.MI.SA 019 021 022 023 025 032.MI 032.MI.SA 033 036 037 038 039 040 041 042 043 044 045 046 047 049 050 051 052 053 056 061
8.2 44 001 002 003 004 006 007 008 009 010 012.MI 012.MI.SA 013 014 015 016 018 020.MI 020.MI.SA 021 022 024 025 026 028 030 032 033 034 036 037 038 040 042 044 046 047 049 052 055 057 059 064 070 072
8.3 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 028 030 031 032 033 034 035
8.4 28 001 002 003 004 005 006 007 008 009 011 012 013 014 015 016 017 018 021 022 023 024 026 027 028 029 030 501.XP 502.XP
8.5 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 030 031 032 033 034 039 040
8.6 37 001 002 003 004 005 006 007 008 009 011 012 013 014 015 016 017 018 019 020 022 024 025 026 028 029 030 031 032 034 035 038 040 042 044 045 046 048
8.7 27 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027
8.8 28 001 002 003 004 005 006 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029
Chapter 9: Differential Equations
9.R 25 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028
9.1 16 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028
9.2 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 039 040
9.3 31 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 027 029 030 031 032 501.XP
9.4 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
Chapter 10: Probability and Calculus
10.R 28 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022 023 024 025 026 027 028 029
10.1 61 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 058 060 063 064 501.XP 502.XP
10.2 32 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 024 025 026 027 029 030 031 032 033 034 035
10.3 34 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034
Chapter 11: Taylor Polynomials and Infinite Series
11.R 40 001 002 003 004 005 006 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 029 030 031 032 033 034 035 036 038 040 045 047 048 049
11.1 34 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 020 022 023 024 025 026 028 030 032 033 034 036 038 039 040 042
11.2 45 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 021 022 023 024 025 026 027 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047
11.3 39 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 038 041 042
11.4 39 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049
11.5 32 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032
11.6 30 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
11.7 37 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 035 036 037 039
Chapter 12: Trigonometric Functions
12.R 32 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 023 026 027 028 029 030 031 032 033 034 035 037
12.1 26 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026
12.2 40 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 032 033 035 036 037 048 049 051 052 053
12.3 45 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 036 038 039 040 042 046 054 056 058 060 064
12.4 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 022 023 024 026 028 030 032 033 034 035 036 038 043 044 046
Total 2976