Advanced Engineering Mathematics 6th edition

Textbook Cover

Dennis G. Zill
Publisher: Jones and Bartlett Learning

eBook

eBook

Your students have access to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework and eBook
Higher Education Single Term $70.95
Higher Education Multi-Term $105.90
High School $50.50

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Introduction to Differential Equations
    • 1.1: Definitions and Terminology (24)
    • 1.2: Initial-Value Problems (24)
    • 1.3: Differential Equations as Mathematical Models (21)
    • 1: Chapter in Review (25)
    • 1: Test Bank (18)

  • Chapter 2: First-Order Differential Equations
    • 2.1: Solution Curves Without a Solution (27)
    • 2.2: Separable Equations (28)
    • 2.3: Linear Equations (26)
    • 2.4: Exact Equations (26)
    • 2.5: Solutions by Substitutions (25)
    • 2.6: A Numerical Method (11)
    • 2.7: Linear Models (31)
    • 2.8: Nonlinear Models (20)
    • 2.9: Modeling with Systems of First-Order DEs (12)
    • 2: Chapter in Review (39)
    • 2: Test Bank (12)

  • Chapter 3: Higher-Order Differential Equations
    • 3.1: Theory of Linear Equations (20)
    • 3.2: Reduction of Order (18)
    • 3.3: Homogeneous Linear Equations with Constant Coefficients (41)
    • 3.4: Undetermined Coefficients (36)
    • 3.5: Variation of Parameters (23)
    • 3.6: Cauchy–Euler Equations (29)
    • 3.7: Nonlinear Equations (13)
    • 3.8: Linear Models: Initial-Value Problems (31)
    • 3.9: Linear Models: Boundary-Value Problems (21)
    • 3.10: Green's Functions (28)
    • 3.11: Nonlinear Models (10)
    • 3.12: Solving Systems of Linear Equations (16)
    • 3: Chapter in Review (44)
    • 3: Test Bank (7)

  • Chapter 4: The Laplace Transform
    • 4.1: Definition of the Laplace Transform (27)
    • 4.2: The Inverse Transform and Transforms of Derivatives (28)
    • 4.3: Translation Theorems (44)
    • 4.4: Additional Operational Properties (36)
    • 4.5: The Dirac Delta Function (10)
    • 4.6: Systems of Linear Differential Equations (12)
    • 4: Chapter in Review (41)
    • 4: Test Bank (12)

  • Chapter 5: Series Solutions of Linear Differential Equations
    • 5.1: Solutions about Ordinary Points (15)
    • 5.2: Solutions about Singular Points (17)
    • 5.3: Special Functions (15)
    • 5: Chapter in Review (16)
    • 5: Test Bank (4)

  • Chapter 6: Numerical Solutions of Ordinary Differential Equations
    • 6.1: Euler Methods and Error Analysis (13)
    • 6.2: Runge–Kutta Methods (13)
    • 6.3: Multistep Methods (5)
    • 6.4: Higher-Order Equations and Systems (7)
    • 6.5: Second-Order Boundary-Value Problems (10)
    • 6: Chapter in Review (8)
    • 6: Test Bank

  • Chapter 7: Vectors
    • 7.1: Vectors in 2-Space (22)
    • 7.2: Vectors in 3-Space (19)
    • 7.3: Dot Product (20)
    • 7.4: Cross Product (17)
    • 7.5: Lines and Planes in 3-Space (30)
    • 7.6: Vector Spaces (12)
    • 7.7: Gram–Schmidt Orthogonalization Process (11)
    • 7: Chapter in Review (49)
    • 7: Test Bank (6)

  • Chapter 8: Matrices
    • 8.1: Matrix Algebra (15)
    • 8.2: Systems of Linear Algebraic Equations (17)
    • 8.3: Rank of a Matrix (10)
    • 8.4: Determinants (14)
    • 8.5: Properties of Determinants (13)
    • 8.6: Inverse of a Matrix (24)
    • 8.7: Cramer's Rule (8)
    • 8.8: The Eigenvalue Problem (14)
    • 8.9: Powers of Matrices (9)
    • 8.10: Orthogonal Matrices (10)
    • 8.11: Approximation of Eigenvalues (6)
    • 8.12: Diagonalization (21)
    • 8.13: LU-Factorization (17)
    • 8.14: Cryptography (8)
    • 8.15: An Error-Correcting Code (9)
    • 8.16: Method of Least Squares (10)
    • 8.17: Discrete Compartmental Models (4)
    • 8: Chapter in Review (48)
    • 8: Test Bank (9)

  • Chapter 9: Vector Calculus
    • 9.1: Vector Functions (20)
    • 9.2: Motion on a Curve (14)
    • 9.3: Curvature and Components of Acceleration (15)
    • 9.4: Partial Derivatives (21)
    • 9.5: Directional Derivative (22)
    • 9.6: Tangent Planes and Normal Lines (13)
    • 9.7: Curl and Divergence (14)
    • 9.8: Line Integrals (19)
    • 9.9: Independence of the Path (16)
    • 9.10: Double Integrals (31)
    • 9.11: Double Integrals in Polar Coordinates (19)
    • 9.12: Green's Theorem (15)
    • 9.13: Surface Integrals (20)
    • 9.14: Stokes' Theorem (13)
    • 9.15: Triple Integrals (38)
    • 9.16: Divergence Theorem (10)
    • 9.17: Change of Variables in Multiple Integrals (16)
    • 9: Chapter in Review (55)
    • 9: Test Bank (8)

  • Chapter 10: Systems of Linear Differential Equations
    • 10.1: Theory of Linear Systems (15)
    • 10.2: Homogeneous Linear Systems (34)
    • 10.3: Solution by Diagonalization (9)
    • 10.4: Nonhomogeneous Linear Systems (31)
    • 10.5: Matrix Exponential (16)
    • 10: Chapter in Review (15)
    • 10: Test Bank (2)

  • Chapter 11: Systems of Nonlinear Differential Equations
    • 11.1: Autonomous Systems (20)
    • 11.2: Stability of Linear Systems (7)
    • 11.3: Linearization and Local Stability (6)
    • 11.4: Autonomous Systems as Mathematical Models (6)
    • 11.5: Periodic Solutions, Limit Cycles, and Global Stability (3)
    • 11: Chapter in Review (13)
    • 11: Test Bank (9)

  • Chapter 12: Orthogonal Functions and Fourier Series
    • 12.1: Orthogonal Functions (17)
    • 12.2: Fourier Series (13)
    • 12.3: Fourier Cosine and Sine Series (27)
    • 12.4: Complex Fourier Series (8)
    • 12.5: Sturm–Liouville Problem (4)
    • 12.6: Bessel and Legendre Series (3)
    • 12: Chapter in Review (15)
    • 12: Test Bank (8)

  • Chapter 13: Boundary-Value Problems in Rectangular Coordinates
    • 13.1: Separable Partial Differential Equations (8)
    • 13.2: Classical PDEs and Boundary-Value Problems (5)
    • 13.3: Heat Equation (5)
    • 13.4: Wave Equation (7)
    • 13.5: Laplace's Equation (5)
    • 13.6: Nonhomogeneous Boundary-Value Problems (5)
    • 13.7: Orthogonal Series Expansions (4)
    • 13.8: Fourier Series in Two Variables (3)
    • 13: Chapter in Review (9)
    • 13: Test Bank (8)

  • Chapter 14: Boundary-Value Problems in Other Coordinate Systems
    • 14.1: Polar Coordinates (4)
    • 14.2: Cylindrical Coordinates (3)
    • 14.3: Spherical Coordinates (4)
    • 14: Chapter in Review (6)
    • 14: Test Bank

  • Chapter 15: Integral Transform Method
    • 15.1: Error Function (3)
    • 15.2: Applications of the Laplace Transform (6)
    • 15.3: Fourier Integral (5)
    • 15.4: Fourier Transforms (6)
    • 15.5: Fast Fourier Transform (2)
    • 15: Chapter in Review (9)
    • 15: Test Bank (3)

  • Chapter 16: Numerical Solutions of Partial Differential Equations
    • 16.1: Laplace's Equation (7)
    • 16.2: Heat Equation (7)
    • 16.3: Wave Equation (6)
    • 16: Chapter in Review (3)
    • 16: Test Bank (4)

  • Chapter 17: Functions of a Complex Variable
    • 17.1: Complex Numbers (6)
    • 17.2: Powers and Roots (6)
    • 17.3: Sets in the Complex Plane (4)
    • 17.4: Functions of a Complex Variable (5)
    • 17.5: Cauchy–Riemann Equations (4)
    • 17.6: Exponential and Logarithmic Functions (6)
    • 17.7: Trigonometric and Hyperbolic Functions (4)
    • 17.8: Inverse Trigonometric and Hyperbolic Functions (4)
    • 17: Chapter in Review (36)
    • 17: Test Bank (7)

  • Chapter 18: Integration in the Complex Plane
    • 18.1: Contour Integrals (4)
    • 18.2: Cauchy–Goursat Theorem (4)
    • 18.3: Independence of the Path (4)
    • 18.4: Cauchy's Integral Formulas (5)
    • 18: Chapter in Review (29)
    • 18: Test Bank

  • Chapter 19: Series and Residues
    • 19.1: Sequences and Series (4)
    • 19.2: Taylor Series (4)
    • 19.3: Laurent Series (4)
    • 19.4: Zeros and Poles (4)
    • 19.5: Residues and Residue Theorem (3)
    • 19.6: Evaluation of Real Integrals (4)
    • 19: Chapter in Review (33)
    • 19: Test Bank (6)

  • Chapter 20: Conformal Mappings
    • 20.1: Complex Functions as Mappings (4)
    • 20.2: Conformal Mappings (4)
    • 20.3: Linear Fractional Transformations (4)
    • 20.4: Schwarz–Christoffel Transformations (4)
    • 20.5: Poisson Integral Formulas (3)
    • 20.6: Applications (4)
    • 20: Chapter in Review (16)
    • 20: Test Bank


Modern and comprehensive, the new sixth edition of Advanced Engineering Mathematics by Dennis G. Zill is a compendium of topics that are most often covered in courses in engineering mathematics, and is extremely flexible to meet the unique needs of courses ranging from ordinary differential equations, to vector calculus, to partial differential equations. The WebAssign component for this title includes question links to the full eBook along with useful Instructor Resources such as related PowerPoint Slides, a test bank of questions, and the Instructor Solutions Manual.

Use the Textbook Edition Upgrade Tool to automatically update all of your assignments from the previous edition to corresponding questions in this textbook.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
R - Review
TB - Test Bank


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter 1: Introduction to Differential Equations
1.R 25 001 002 003 004 005 006 007 008 009 010 011 012 014 015 016 017 019 020 022 023 036 037 041 042 043
1.TB 18 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018
1.1 24 001 003 007 008 009 012 013 015 017 019 023 024 029 031 034 036 037 040 041 045 048 054 058 060
1.2 24 001 003 006 007 009 011 013 015 017 019 021 023 025 027 033 034 035 037 039 041 042 043 045 048
1.3 21 001 002 005 006 007 008 009 010 013 014 015 017 018 019 021 023 025 026 027 039 040
Chapter 2: First-Order Differential Equations
2.R 39 001 002 003 004 005 006 008 009 010 011 012 013 014 015 016 021 022 023 024 025 026 028 029 030 031 032 033 034 038 039 042 043 044 045 047 048 049 050 501.XP
2.TB 12 001 002 003 004 005 006 007 008 009 010 011 012
2.1 27 001 003 004 005 006 007 009 010 011 013 014 015 017 019 021 023 024 025 026 027 028 029 030 031 038 040 042
2.2 28 001 003 005 006 007 009 010 011 012 015 016 017 019 020 021 023 024 026 027 029 030 031 032 034 036 040 041 051
2.3 26 001 003 005 008 009 010 011 013 015 017 019 020 021 022 023 024 025 026 029 033 035 037 038 048 053 501.XP
2.4 26 001 003 005 006 007 009 011 013 015 016 017 019 021 023 024 025 027 028 029 031 033 035 036 037 042 045
2.5 25 001 003 004 005 008 009 011 012 014 015 017 019 020 021 022 023 026 027 028 029 030 033 035 036 037
2.6 11 001 002 003 004 005 007 008 009 010 011 012
2.7 31 001 003 004 005 006 009 010 011 013 014 016 017 019 021 023 025 027 029 031 032 033 035 036 037 038 039 041 043 044 048 049
2.8 20 001 002 003 004 005 006 007 008 011 012 013 015 016 017 019 021 022 023 024 030
2.9 12 001 002 004 005 007 008 009 010 011 012 013 015
Chapter 3: Higher-Order Differential Equations
3.R 44 001 002 003 004 005 006 007 008 009 010 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 033 034 035 036 037 038 041 042 043 044 045 046 047 048 049 055 056
3.TB 7 001 002 003 004 005 006 007
3.1 20 001 002 004 009 012 014 015 017 018 019 020 021 023 024 025 026 027 029 036 040
3.2 18 001 003 005 006 007 008 009 010 012 013 014 015 016 017 019 020 022 024
3.3 41 001 002 004 005 006 007 009 010 011 013 014 015 017 018 020 021 022 023 025 026 027 029 031 032 033 035 037 039 040 041 043 045 047 049 051 053 054 055 056 059 060
3.4 36 001 002 003 004 006 007 008 009 010 012 013 014 016 017 018 019 020 022 023 025 027 028 029 031 032 033 035 037 038 039 041 042 045 046 047 048
3.5 23 001 003 005 008 009 010 011 013 015 016 017 019 021 022 024 025 027 029 030 031 032 034 501.XP
3.6 29 001 002 003 006 007 009 010 012 013 015 017 019 022 023 025 026 029 030 032 033 035 039 042 043 045 047 049 050 057
3.7 13 003 005 006 007 009 011 012 013 015 016 017 019 021
3.8 31 001 002 003 005 006 008 012 013 014 015 016 019 021 022 025 027 029 031 033 034 035 037 039 041 042 049 051 053 056 057 060
3.9 21 001 002 004 005 007 012 013 014 015 017 018 020 021 022 023 027 029 031 033 036 041
3.10 28 001 003 004 005 007 008 009 011 012 013 015 016 019 021 022 024 025 027 029 031 032 033 035 038 039 041 043 044
3.11 10 001 002 003 004 007 009 010 017 019 501.XP
3.12 16 001 002 004 005 007 008 009 010 012 013 015 017 019 021 022 023
Chapter 4: The Laplace Transform
4.R 41 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 025 026 027 028 029 030 031 032 033 034 035 036 039 040 041 042 043 044 045
4.TB 12 001 002 003 004 005 006 007 008 009 010 011 012
4.1 27 001 002 004 005 007 009 012 013 014 015 018 019 021 024 025 027 028 031 032 033 035 037 039 043 046 055 057
4.2 28 001 003 005 008 009 011 013 014 015 017 019 021 022 023 025 027 029 031 033 035 037 038 039 041 044 047 048 050
4.3 44 001 004 005 008 009 010 013 016 017 019 021 023 025 027 029 030 031 032 033 034 037 038 039 041 043 044 046 047 049 051 054 055 056 057 059 061 063 065 067 070 071 073 077 080
4.4 36 001 002 003 004 007 009 011 013 015 018 019 022 023 025 027 029 031 034 035 037 041 042 043 044 047 049 050 051 054 055 057 059 062 063 065 067
4.5 10 001 003 005 007 009 011 012 015 016 018
4.6 12 002 003 005 007 008 010 011 012 013 015 017 019
Chapter 5: Series Solutions of Linear Differential Equations
5.R 16 001 002 003 005 006 008 009 010 011 013 015 016 017 019 020 023
5.TB 4 027 028 029 030
5.1 15 001 003 005 008 011 017 019 021 022 024 025 027 029 031 033
5.2 17 001 003 005 007 009 011 013 015 017 019 021 023 025 027 028 031 032
5.3 15 001 003 006 007 010 011 013 015 018 019 024 026 031 036 053
Chapter 6: Numerical Solutions of Ordinary Differential Equations
6.R 8 001 002 003 004 005 006 007 008
6.1 13 001 002 003 005 007 008 010 011 012 013 014 017 020
6.2 13 003 004 005 007 009 010 011 012 013 014 015 016 017
6.3 5 003 004 005 006 007
6.4 7 001 003 005 006 007 010 011
6.5 10 001 003 004 005 006 007 008 009 010 012
Chapter 7: Vectors
7.R 49 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 042 043 044 045 046 047 048 049 050
7.TB 6 032 033 034 035 036 037
7.1 22 001 003 006 008 009 011 013 015 018 020 022 023 026 029 031 033 035 037 041 044 047 050
7.2 19 003 006 014 021 023 025 027 029 031 033 035 037 040 041 043 046 047 050 052
7.3 20 001 004 008 010 013 016 020 021 023 026 028 031 033 035 037 039 041 043 045 048
7.4 17 001 004 008 009 011 013 019 023 029 030 037 039 043 047 049 052 054
7.5 30 001 004 007 010 013 017 019 022 023 026 029 031 033 035 037 039 041 046 050 051 054 057 062 065 067 069 071 073 075 077
7.6 12 001 005 011 012 017 019 025 027 030 031 032 034
7.7 11 001 003 005 008 009 012 014 015 017 019 023
Chapter 8: Matrices
8.R 48 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 025 026 027 029 030 031 032 033 034 035 036 037 039 040 041 042 043 044 045 046 047 048 049 050 052 058 059 060
8.TB 9 001 002 003 004 005 006 007 008 009
8.1 15 001 010 011 013 016 017 021 023 025 027 029 037 042 046 047
8.2 17 001 003 005 007 009 012 014 015 018 020 022 025 027 029 041 042 044
8.3 10 001 003 005 007 009 011 012 015 016 018
8.4 14 002 003 005 007 011 013 015 017 019 021 023 025 027 029
8.5 13 011 012 016 017 019 023 027 029 031 033 035 042 044
8.6 24 002 003 005 008 009 011 014 015 017 019 021 023 025 028 029 031 041 045 047 049 051 053 055 057
8.7 8 001 003 005 007 009 011 013 014
8.8 14 001 004 005 007 009 011 013 015 017 019 021 023 025 028
8.9 9 003 005 007 009 011 012 015 016 017
8.10 10 006 008 010 011 013 017 019 021 024 026
8.11 6 002 003 006 007 010 012
8.12 21 001 003 005 007 010 011 014 015 017 019 022 023 026 027 029 031 033 035 036 040 042
8.13 17 001 003 005 007 011 013 015 017 019 022 024 026 028 031 034 038 040
8.14 8 001 003 004 006 007 009 011 012
8.15 9 001 006 009 011 013 016 021 025 030
8.16 10 001 002 003 004 005 006 007 008 009 010
8.17 4 001 002 003 004
Chapter 9: Vector Calculus
9.R 55 001 002 004 005 006 008 009 010 012 013 014 016 017 018 019 020 021 022 023 024 026 027 028 029 030 031 032 034 035 036 037 038 039 040 041 042 043 044 045 047 049 050 051 052 053 055 056 057 058 059 060 061 063 064 065
9.TB 8 030 031 032 033 034 035 036 037
9.1 20 001 005 010 011 013 015 017 019 021 023 025 027 031 033 035 037 039 041 044 045
9.2 14 001 003 005 007 009 011 012 013 014 015 022 025 026 027
9.3 15 002 003 005 006 007 008 011 013 015 016 017 018 020 023 024
9.4 21 001 004 007 010 012 015 017 020 021 025 027 031 038 041 043 050 052 054 056 057 058
9.5 22 001 002 005 008 010 011 014 015 018 020 021 023 025 028 030 031 033 035 037 038 041 043
9.6 13 003 006 008 009 011 013 015 017 021 025 027 033 036
9.7 14 002 004 009 011 013 016 019 021 024 027 028 030 035 040
9.8 19 001 003 006 007 009 013 015 017 019 022 023 026 028 029 031 034 036 040 042
9.9 16 001 003 005 007 008 010 011 013 015 017 019 021 023 025 027 028
9.10 31 001 004 006 007 009 011 013 015 018 020 023 025 027 029 031 033 035 037 040 041 043 046 050 051 054 055 057 059 061 065 066
9.11 19 001 004 005 007 010 011 013 016 018 020 022 023 025 027 029 031 033 034 035
9.12 15 001 003 005 007 009 011 014 019 020 022 023 025 028 029 033
9.13 20 001 003 005 008 009 010 015 018 019 021 023 025 028 029 032 034 036 037 039 041
9.14 13 001 002 003 005 007 008 009 010 011 013 014 015 017
9.15 38 001 003 004 007 009 013 015 018 019 021 023 027 029 034 035 037 039 041 043 046 048 050 051 053 056 057 059 061 063 065 067 069 071 073 075 077 079 081
9.16 10 001 003 005 006 007 009 011 012 013 014
9.17 16 001 003 005 008 010 013 014 016 017 019 020 022 023 025 027 029
Chapter 10: Systems of Linear Differential Equations
10.R 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
10.TB 2 005 006
10.1 15 001 003 004 005 007 009 010 011 013 016 017 019 021 023 025
10.2 34 001 002 003 005 006 007 008 009 012 013 014 015 016 017 021 022 023 025 027 029 030 031 032 035 036 037 039 041 043 045 047 048 049 054
10.3 9 001 002 003 005 006 008 009 010 011
10.4 31 001 002 003 004 005 006 007 009 010 011 012 013 014 016 017 019 020 021 022 024 025 026 029 031 032 033 034 035 037 039 040
10.5 16 001 003 004 005 007 008 009 010 012 015 016 017 019 021 022 025
Chapter 11: Systems of Nonlinear Differential Equations
11.R 13 001 002 003 004 005 006 007 008 009 010 011 013 014 015 016
11.TB 9 024 025 026 030 031 032 033 034 035
11.1 20 001 002 004 005 007 009 011 012 014 015 016 017 019 021 022 023 024 027 028 029
11.2 7 001 002 004 006 007 008 009 011 012 013 015 017 018 023 025
11.3 6 003 004 007 009 011 013 015 017 018 020 021 022 024 035 036 037
11.4 6 001 004 010 011 016 017 019 022
11.5 3 003 005 007 011 014 017 020 022
Chapter 12: Orthogonal Functions and Fourier Series
12.R 15 001 002 003 004 005 006 007 008 009 010 013 014 015 016 017 019 020 021 022
12.TB 8 001 002 003 004 005 006 007 008
12.1 17 001 003 005 007 008 009 011 018 021 022 023 024 025 026 028 030 031
12.2 13 001 002 003 005 007 008 009 011 013 014 015 017 018
12.3 27 001 003 004 005 008 009 011 012 013 015 016 018 019 021 024 025 029 033 034 035 038 039 042 043 045 047 049
12.4 8 001 003 004 006 008 009 010 011
12.5 4 001 002 007 008 009 010 011 012
12.6 3 001 003 005 007 009 015 018
Chapter 13: Boundary-Value Problems in Rectangular Coordinates
13.R 9 001 002 003 005 006 007 008 009 010 011 012 013 014 016
13.TB 8 001 002 003 004 005 006 007 008
13.1 8 001 002 003 005 007 009 011 012 013 017 018 019 020 021 023 026 030
13.2 5 001 003 004 005 006 007 008 009 011
13.3 5 001 002 004 005 006 007 008 009
13.4 7 001 002 003 004 006 007 010 011 015 019 021 023 501.XP
13.5 5 001 002 005 007 009 011 015 016
13.6 5 001 003 005 006 007 009 010 011 013 014 016 017 018 020
13.7 4 002 003 004 006 007 008 010
13.8 3 001 002 003 005 007
Chapter 14: Boundary-Value Problems in Other Coordinate Systems
14.R 6 001 002 003 004 007 009 011 013 021 023
14.1 4 001 003 005 007 008 009 010 014 016 018
14.2 3 002 003 005 007 012 013 014 015 017
14.3 4 001 003 005 009 010 011 014
Chapter 15: Integral Transform Method
15.R 9 001 002 004 006 007 008 009 012 013 014 016 017 019
15.TB 3 034 035 036
15.1 3 001 006 007 009 013
15.2 6 001 002 003 005 006 008 009 011 014 017 018 019 021 022 025 026 029 033
15.3 5 001 002 003 005 007 008 009 011 013 014 015 017
15.4 6 001 002 003 005 006 008 010 011 013 015 017 019 021
15.5 2 003 008
Chapter 16: Numerical Solutions of Partial Differential Equations
16.R 3 001 002 003
16.TB 4 030 031 034 035
16.1 7 001 002 003 004 005 006 008
16.2 7 001 003 004 006 010 011 012
16.3 6 001 002 003 004 005 006
Chapter 17: Functions of a Complex Variable
17.R 36 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 027 028 029 030 031 032 033 034 035 036 037 038
17.TB 7 030 031 032 033 034 035 036
17.1 6 001 002 004 005 006 008 009 011 013 015 017 018 019 020 021 023 024 025 027 029 031 032 033 034 036 038 039 040 043
17.2 6 001 002 003 004 006 008 010 011 012 013 015 016 017 018 020 021 023 024 025 026 027 028 031 032 033 034 035 036
17.3 4 001 002 003 004 006 007 008 010 011 012 013 016 017 019 021 022
17.4 5 001 002 004 006 007 008 009 010 011 013 015 016 017 019 020 022 027 029 031 032 033 035 037 038 041 043 045 046
17.5 4 001 002 003 005 007 011 012 015 016 025 026 029
17.6 6 001 003 004 006 007 009 010 011 012 014 015 023 024 025 027 029 030 031 033 034 035 037 039 040 042 043 044 046 047
17.7 4 001 002 004 006 007 010 011 012 015 016 017 019 021 022 023 029
17.8 4 001 002 004 005 006 007 008 010 011 012 013 014
Chapter 18: Integration in the Complex Plane
18.R 29 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030
18.1 4 001 002 003 004 006 008 010 011 012 014 016 018 019 020 021 022 024 025 026 028 032 033 034
18.2 4 003 005 009 010 011 012 013 015 016 017 018 019 021 023 024
18.3 4 001 002 003 004 005 006 008 009 011 012 013 016 017 018 019 021 023
18.4 5 001 003 004 005 007 008 009 010 012 014 015 016 017 019 021 023 024
Chapter 19: Series and Residues
19.R 33 001 002 003 004 005 006 007 008 009 010 011 012 013 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034
19.TB 6 001 002 003 004 005 006
19.1 4 001 002 004 005 007 009 010 011 012 013 016 017 019 021 023 024 025 026 027
19.2 4 002 003 005 007 010 011 014 015 017 020 021 024 025 027 029 032 033 035
19.3 4 001 003 005 007 010 011 013 014 016 017 019 021 023 025 027
19.4 4 002 003 004 005 006 008 009 011 013 015 018 020 022 024 025
19.5 3 001 003 004 006 007 008 010 012 013 015 017 019 021 023 025 026 027 030 031
19.6 4 002 003 004 007 009 011 013 016 017 018 020 022 024 026 027 029
Chapter 20: Conformal Mappings
20.R 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 018
20.1 4 001 004 006 008 010 011 013 015 016 018 019 021 023 025 026 028 030
20.2 4 001 003 005 008 011 012 015 018 019 021 023 024 026
20.3 4 001 003 005 007 009 011 013 015 017
20.4 4 001 003 004 005 006 007 009 012
20.5 3 001 002 003 005 007 008 009 011 014
20.6 4 001 003 005 006 009 011 013 014 019
Total 2517 (443)