# Calculus for the Life Sciences: Modelling the Dynamics of Life (Canadian edition) 2nd edition

Frederick R. Adler and Miroslav Lovric

## eBook

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter 1: Introduction to Models and Functions
• 1.1: Why Mathematics Matters
• 1.2: Models in Life Sciences
• 1.3: Variables, Parameters, and Functions (4)
• 1.4: Working with Functions (6)
• 1.5: Logical Reasoning and Language in Math and Life Sciences
• 1: True/False Quiz
• 1: Supplementary Problems
• 1: Project

• Chapter 2: Modelling Using Elementary Functions
• 2.1: Elementary Models (5)
• 2.2: Exponential and Logarithmic Functions; Exponential Models (5)
• 2.3: Trigonometric and Inverse Trigonometric Functions (5)
• 2: True/False Quiz
• 2: Supplementary Problems

• Chapter 3: Discrete-Time Dynamical Systems
• 3.1: Introduction to Discrete-Time Dynamical Systems (4)
• 3.2: Analysis of Discrete-Time Dynamical Systems (3)
• 3.3: Modelling with Discrete-Time Dynamical Systems (6)
• 3.4: Nonlinear Dynamics Model of Selection (7)
• 3.5: A Model of Gas Exchange in the Lung (4)
• 3: True/False Quiz
• 3: Supplementary Problems
• 3: Project

• Chapter 4: Limits, Continuity, and Derivatives
• 4.1: Investigating Change (4)
• 4.2: Limit of a Function (5)
• 4.3: Infinite Limits and Limits at Infinity (6)
• 4.4: Continuity (5)
• 4.5: Derivatives and Differentiability (5)
• 4: True/False Quiz
• 4: Supplementary Problems
• 4: Project

• Chapter 5: Working with Derivatives
• 5.1: Derivatives of Powers, Polynomials, and Exponential Functions (4)
• 5.2: Derivatives of Products and Quotients (4)
• 5.3: The Chain Rule and the Derivatives of Logarithmic Functions (6)
• 5.4: Derivatives of Trigonometric and Inverse Trigonometric Functions (4)
• 5.5: Implicit Differentiation, Logarithmic Differentiation, and Related Rates (5)
• 5.6: The Second Derivative, Curvature, and Concavity (4)
• 5.7: Approximating Functions with Polynomials (4)
• 5: True/False Quiz
• 5: Supplementary Problems
• 5: Project

• Chapter 6: Applications of Derivatives
• 6.1: Extreme Values of a Function (9)
• 6.2: Three Case Studies in Optimization (2)
• 6.3: Reasoning about Functions: Continuity and Differentiability (4)
• 6.4: Leading Behaviour and L'Hôpital's Rule (8)
• 6.5: Graphing Functions: A Summary (3)
• 6.6: Newton's Method (4)
• 6.7: Stability of Discrete-Time Dynamical Systems (5)
• 6.8: The Logistic Dynamical System and More Complex Dynamics (4)
• 6.9: Case Study: Painting and Deep Breathing (Online)
• 6: True/False Quiz
• 6: Supplementary Problems
• 6: Projects

• Chapter 7: Integrals and Applications
• 7.1: Differential Equations (5)
• 7.2: Antiderivatives (5)
• 7.3: Definite Integral and Area (6)
• 7.4: Definite and Indefinite Integrals (7)
• 7.5: Techniques of Integration: Substitution and Integration by Parts (5)
• 7.6: Applications (7)
• 7.7: Improper Integrals (4)
• 7: True/False Quiz
• 7: Supplementary Problems
• 7: Projects

• Chapter 8: Differential Equations
• 8.1: Basic Models with Differential Equations (5)
• 8.2: Equilibria and Display of Autonomous Differential Equations (5)
• 8.3: Stability of Equilibria (4)
• 8.4: Separable Differential Equations (6)
• 8.5: Systems of Differential Equations; Predator-Prey Model (4)
• 8.6: The Phase Plane (3)
• 8.7: Solutions in the Phase Plane (3)
• 8.8: Dynamics of a Neuron (online)
• 8: True/False Quiz
• 8: Supplementary Problems
• 8: Projects

• Chapter FSV: Functions of Several Variables
• FSV.1: Introduction (2)
• FSV.2: Graph of a Function of Several Variables (3)
• FSV.3: Limits and Continuity (2)
• FSV.4: Partial Derivatives (3)
• FSV.5: Tangent Plane, Linearization, and Differentiability (2)
• FSV.6: The Chain Rule (2)
• FSV.7: Second-Order Partial Derivatives and Applications (2)
• FSV.8: Partial Differential Equations (1)
• FSV.9: Directional Derivative and Gradient (3)
• FSV.10: Extreme Values (2)
• FSV.11: Optimization with Constraints (1)

• Chapter PS: Probability and Statistics
• PS.1: Introduction: Why Probability and Statistics
• PS.2: Stochastic Models (2)
• PS.3: Basics of Probability Theory (2)
• PS.4: Conditional Probability and the Law of Total Probability (2)
• PS.5: Independence (2)
• PS.6: Discrete Random Variables (2)
• PS.7: The Mean, the Median, and the Mode (2)
• PS.8: The Spread of a Distribution (2)
• PS.9: Joint Distributions (2)
• PS.10: The Binomial Distribution (3)
• PS.11: The Multinomial and the Geometric Distributions (2)
• PS.12: The Poisson Distribution (2)
• PS.13: Continuous Random Variables (2)
• PS.14: The Normal Distribution (2)
• PS.15: The Uniform and the Exponential Distributions (2)

• Chapter LA: Linear Algebra
• LA.1: Identifying Location in a Plane and in Space (2)
• LA.2: Vectors (2)
• LA.3: The Dot Product (2)
• LA.4: Equations of Lines and Planes (2)
• LA.5: Systems of Linear Equations (2)
• LA.6: Gaussian Elimination (2)
• LA.7: Linear Systems in Medical Imaging
• LA.8: Matrices (2)
• LA.9: Matrices and Linear Systems (2)
• LA.10: Linear Transformations (2)
• LA.11: Eigenvalues and Eigenvectors (3)
• LA.12: The Leslie Model: Age-Structured Population Dynamics (2)

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter FSV: Functions of Several Variables
FSV.1 2 009 021
FSV.2 3 010 029 033
FSV.3 2 013 030
FSV.4 3 012 017 031
FSV.5 2 019 024
FSV.6 2 019 031
FSV.7 2 009 031
FSV.8 1 017
FSV.9 3 010 020 038
FSV.10 2 014 029
FSV.11 1 011
Chapter LA: Linear Algebra
LA.1 2 021 038
LA.2 2 015 031
LA.3 2 011 022
LA.4 2 013 024
LA.5 2 014 032
LA.6 2 019 029
LA.8 2 018 027
LA.9 2 015 028
LA.10 2 008 024
LA.11 3 016 022 029
LA.12 2 004 012
Chapter PS: Probability and Statistics
PS.2 2 006 015
PS.3 2 024 031
PS.4 2 016 021
PS.5 2 012 018
PS.6 2 009 029
PS.7 2 018 026
PS.8 2 012 019
PS.9 2 009 020
PS.10 3 017 032 036
PS.11 2 009 022
PS.12 2 006 013
PS.13 2 020 031
PS.14 2 018 032
PS.15 2 004 014
Chapter 1: Introduction to Models and Functions
1.3 4 021 023 032 040
1.4 6 017 037 039 042 055 059
Chapter 2: Modelling Using Elementary Functions
2.1 5 016 036 043 045 054
2.2 5 016 024 040 059 068
2.3 5 019 045 055 067 070
Chapter 3: Discrete-Time Dynamical Systems
3.1 4 004 008 012 025
3.2 3 009 015 029
3.3 6 007 010 013 016 028 031
3.4 7 012 014 017 023 024 033 039
3.5 4 004 009 017 031
Chapter 4: Limits, Continuity, and Derivatives
4.1 4 010 013 016 019
4.2 5 006 012 034 045 051
4.3 6 011 014 036 046 051 056
4.4 5 016 032 039 041 050
4.5 5 009 024 028 041 046
Chapter 5: Working with Derivatives
5.1 4 007 012 032 039
5.2 4 021 034 039 042
5.3 6 014 023 034 044 046 063
5.4 4 011 017 027 053
5.5 5 003 010 018 029 033
5.6 4 014 023 031 039
5.7 4 006 012 016 033
Chapter 6: Applications of Derivatives
6.1 9 010 013 018 019 023 036 041 047 064
6.2 2 003 019
6.3 4 003 009 012 023
6.4 8 006 014 019 026 027 031 041 043
6.5 3 006 013 016
6.6 4 002 007 013 027
6.7 5 003 008 010 021 023
6.8 4 007 014 016 019
Chapter 7: Integrals and Applications
7.1 5 012 020 024 030 038
7.2 5 003 012 022 029 035
7.3 6 009 030 034 041 066 072
7.4 7 009 014 017 052 058 065 068
7.5 5 018 025 028 037 040
7.6 7 010 013 021 035 043 063 078
7.7 4 008 013 016 018
Chapter 8: Differential Equations
8.1 5 010 014 023 028 031
8.2 5 006 009 012 022 030
8.3 4 001 004 009 011
8.4 6 005 007 012 017 024 041
8.5 4 004 007 016 018
8.6 3 011 012 015
8.7 3 005 008 010
Chapter 9
9 0
Chapter 10
10 0
Chapter 11
11 0
Total 288