# Elementary Geometry for College Students 7th edition

Daniel C. Alexander and Geralyn M. Koeberlein
Publisher: Cengage Learning

## Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

## Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

• Alexander Elementary Geometry for College Students 7e

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter P: Preliminary Concepts
• P.1: Sets and Geometry (19)
• P.2: Statements and Reasoning (27)
• P.3: Informal Geometry and Measurement (26)
• P: Review Exercises
• P: Test

• Chapter 1: Line and Angle Relationships
• 1.1: Early Definitions and Postulates (21)
• 1.2: Angles and Their Relationships (25)
• 1.3: Introduction to Geometric Proof (27)
• 1.4: Relationships: Perpendicular Lines (20)
• 1.5: The Formal Proof of a Theorem (22)
• 1: Review Exercises
• 1: Test

• Chapter 2: Parallel Lines
• 2.1: The Parallel Postulate and Special Angles (27)
• 2.2: Indirect Proof (26)
• 2.3: Proving Lines Parallel (27)
• 2.4: The Angles of a Triangle (32)
• 2.5: Convex Polygons (30)
• 2.6: Symmetry and Transformations (20)
• 2: Review Exercises
• 2: Test

• Chapter 3: Triangles
• 3.1: Congruent Triangles (29)
• 3.2: Corresponding Parts of Congruent Triangles (33)
• 3.3: Isosceles Triangles (30)
• 3.4: Basic Constructions Justified (22)
• 3.5: Inequalities in a Triangle (25)
• 3: Review Exercises
• 3: Test

• 4.1: Properties of a Parallelogram (32)
• 4.2: The Parallelogram and Kite (32)
• 4.3: The Rectangle, Square, and Rhombus (29)
• 4.4: The Trapezoid (33)
• 4: Review Exercises (1)
• 4: Test

• Chapter 5: Similar Triangles
• 5.1: Ratios, Rates and Proportions (30)
• 5.2: Similar Polygons (23)
• 5.3: Proving Triangles Similar (33)
• 5.4: The Pythagorean Theorem (28)
• 5.5: Special Right Triangles (22)
• 5.6: Segments Divided Proportionally (29)
• 5: Review Exercises
• 5: Test

• Chapter 6: Circles
• 6.1: Circles and Related Segments and Angles (30)
• 6.2: More Angle Measures in the Circle (36)
• 6.3: Line and Segment Relationships in the Circle (32)
• 6.4: Some Constructions and Inequalities for the Circle (24)
• 6: Review Exercises
• 6: Test

• Chapter 7: Locus and Concurrence
• 7.1: Locus of Points (25)
• 7.2: Concurrence of Lines (25)
• 7.3: More About Regular Polygons (25)
• 7: Review Exercises
• 7: Test

• Chapter 8: Areas of Polygons and Circles
• 8.1: Area and Initial Postulates (34)
• 8.2: Perimeter and Area of Polygons (33)
• 8.3: Regular Polygons and Area (24)
• 8.4: Circumference and Area of a Circle (28)
• 8.5: More Area Relationships in the Circle (27)
• 8: Review Exercises
• 8: Test

• Chapter 9: Surfaces and Solids
• 9.1: Prisms, Area, and Volume (29)
• 9.2: Pyramids, Area, and Volume (25)
• 9.3: Cylinders and Cones (29)
• 9.4: Polyhedrons and Spheres (30)
• 9: Review Exercises
• 9: Test

• Chapter 10: Analytic Geometry
• 10.1: The Rectangular Coordinate System (30)
• 10.2: Graphs of Linear Equations and Slope (28)
• 10.3: Preparing to Do Analytic Proofs (23)
• 10.4: Analytic Proofs (28)
• 10.5: Equations of Lines (32)
• 10.6: The Three-Dimensional Coordinate System (28)
• 10: Review Exercises
• 10: Test

• Chapter 11: Introduction to Trigonometry
• 11.1: The Sine Ratio and Applications (22)
• 11.2: The Cosine Ratio and Applications (23)
• 11.3: The Tangent Ratio and Other Ratios (28)
• 11.4: Applications with Acute Triangles (23)
• 11: Review Exercises
• 11: Test

• Chapter A: Algebra Review
• A.1: Algebraic Expressions
• A.2: Formulas and Equations
• A.3: Inequalities
• A.4: Factoring and Quadratic Equations
• A.5: The Quadratic Formula and Square Root Properties

Building on the success of previous editions, Elementary Geometry for College Students, 7th edition, explores the important principles and real-world applications of plane, coordinate and solid geometry. Strongly influenced by both NCTM and AMATYC standards, the seventh edition includes intuitive, inductive and deductive experiences in its explorations. It aims to help students develop a comprehensive vocabulary of geometry, an intuitive and inductive approach to the development of principles, and strong deductive skills that lead to both verification of geometric theories and the solution of geometry-based, real-world applications. Available with WebAssign, a flexible and fully customizable online solution that empowers instructors to deploy assignments, instantly assess individual student and class performance, and help students master the course concepts.

Features:
• Watch It links provide step-by-step instruction with short, engaging videos that are ideal for visual learners.
• Master It Tutorials (MI) show how to solve a similar problem in multiple steps by providing direction along with derivation so students understand the concepts and reasoning behind the problem solving.
• Expanded Problem (EP) questions are expanded versions of existing questions that include intermediary steps to guide the student to the final answer.
• Course Packs with ready-to-use assignments built by subject matter experts specifically for this textbook are designed to save you time, and can be easily customized to meet your teaching goals.
• Lecture Slides and an online Test Bank are available as textbook resources.

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
MI - Master It Tutorial
EP - Expanded Problem

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter P: Preliminary Concepts
P.1 19 002 005 007 009 011 013 014 015 016 017 019 021 025 027 028 031 035 036 037
P.2 27 001 003 005 008 009 011 014 016 017 019 020 022 024 026 028 031 033 034 037 040 042 044 046 048 051 053 055
P.3 26 001 003 005 007 009 011 012 014 015 016 019 020 021 022 025 032 033 034 035 037 040 041 043 048 050 050.EP
Chapter 1: Line and Angle Relationships
1.1 21 002 007 008 010 012 014 016 017 020 023 024 025 027 028 031 035 036 038 039 040 041
1.2 25 001 004 007 008 010 013 015 017 018 018.EP 019 022 023 024 027 028 029 032 034 036 041 044 045 047 048
1.3 27 002 004 005 006 007 009 010 011 012 013 014 016 018 019 021 024 026 028 030 032 033 034 035.MI 035.MI.SA 037 038 040
1.4 20 002 004 006 008 012 013 015 016 016.EP 017 019 020 021 022 024 026 027 028 029 030
1.5 22 001 002 003 004 005 006 008 009 010 011 019 020 021 022 023 024 025 026 028 030 032 034
Chapter 2: Parallel Lines
2.1 27 001 002 003 004 005 006 007 008 011 012 015 016 017 017.EP 018 019 020 022 024 027.MI 027.MI.SA 028 030 031 033 035 039
2.2 26 001 002 004 005 006 007 008 009 010 013 017 018 019 020 021 022 023 024 026 028 030 031 032 034 035 036
2.3 27 002 004 006 007 008 009 010 011 012 013 014 015 016 018 020 021 023 024 026 028 028.EP 030 031 033 036 038 039
2.4 32 004 008 010 010.EP 012 013 014 015 016.MI 016.MI.SA 017 018 020 022 023 024 025 026 027 028 028.EP 030 032 035 037 040 042 046 048 049 049.EP 050
2.5 30 001 004 006 008 010 011 013 013.EP 015 018.MI 019 020 021 024 026 027 029 032 033 035 035.EP 037 040 042 043 045 048 049 049.EP 050
2.6 20 001 002 004 005 007 009 015 016 023 025 026 029 030 031 032 033 034 034.EP 035 035.EP
Chapter 3: Triangles
3.1 29 001 002 003 004 006 008 009 011 012 016 016.EP 021 022 023 024 026 029 030 033 034 035 036 037 038 039 040 041 042 043
3.2 33 001 002 003 004 006 007 010 012 016 018 019 020 021 022 023 024 025 026 029 032 033 034 035 036 037 038 039 040 041 042 043 044 045
3.3 30 003 004 005 007 008 010 011 012 013 014 017 017.EP 020 022ab 023 024 025 026 027 028 030 031 033 033.EP 034 038 040 045 049 050
3.4 22 002 004 006 009 011 015 017 019 021 023 025 028 029 031 032 033 034 035 036 037 038 039
3.5 25 001 002 004 007 008 009 010 013 014 015 017 018 019 020 021.MI 021.MI.SA 022 024 026 028 031 033 033.EP 036 037
4.R 1 026
4.1 32 003 004 006 007 008 009 011 011.EP 013 015 017 018 020 021 022 025 026 027 028 029 030 031 032 033 036 039 040 041 043 044 045 045.EP
4.2 32 001 002 003 004 006 007 009 010 011 011.EP 012 013 015 016 017 020 021 021.alt 023 024 025 027 030 031 033 035 035.EP 037 038 041 042 044
4.3 29 001 003 005 006 008 009 010 010.EP 011 013 014 015 017 017.EP 018 020 022 024 025 026 028 029 031 034 037 041 043 044 045
4.4 33 001 003 005 007 008 011 012 014 015 015.EP 016 017 018 019 020 022 024 025 025.EP 026 028 029 033 034 036 036.EP 038 041 041.EP 043 044 045 046
Chapter 5: Similar Triangles
5.1 30 001 003 005 007 008 010.MI 010.MI.SA 012 014 015 015.EP 017 019 020 021 021.EP 023 025 026.MI 026.MI.SA 030 031 031.EP 033 033.EP 035 036 037 041 042
5.2 23 003 006 008 009 010 011 014 016 017 017.EP 019 022 022.EP 023 026 028 029 031 034 036 037 037.EP 040
5.3 33 001a 001b 002 004 005 007 008 009 010 012 014 016 018 020 022 024 025 026 027 028 029 029.EP 030 031 032 034 037 037.EP 038 039 040 041 042
5.4 28 001 003 005 007 009 011 011.EP 012 014 015 016 019.MI 019.MI.SA 021 022 023 025.MI 025.MI.SA 026 028 030 032 033 034 036 039 040 043
5.5 22 001 002 004 005 007 010 012 014 015 018 018.EP 019 022 025 026 029 032 033 033.EP 034 036 037
5.6 29 001 002 004 006 007 009 009.EP 012 014 015 015.EP 017 019 019.EP 022 023 025 027 028 028.EP 030 032 034 035 036 037 038 038.EP 040
Chapter 6: Circles
6.1 30 001 003 005 006 007 009 010 012 013 015 016 016.EP 017 018 018.EP 019 021 022 024 026 027 028 029 030 032 034 036 040 041 043
6.2 36 001 003 004 005 005.EP 007 008 009.MI 009.MI.SA 010 012 013 014 014.EP 015 016 018 020 022 024 025 027 028 030 030.EP 031 033 034 036 037 038 040 042 044 046 048
6.3 32 001 002 007 008 009 010 011 013 013.EP 015 016 018 020 021 021.EP 023 024 028 030 032 033 034 035 035.EP 037 038 042 044 045 046 048 051
6.4 24 002 005 006 009 011 012 016 017 019 021 023 024 026 027 027.EP 028 030 031 032 034 037 039 039.EP 040
Chapter 7: Locus and Concurrence
7.1 25 001 002 004 006 008 010 011 013 015 017 018 019 022 023 025 027 030 032 034 035 036 037 041 042 047
7.2 25 001a 001b 003a 003b 006a 006b 008a 008b 010 015 017 019 020 024 025 027 027.EP 028 029 030 035 039 039.EP 041 046
7.3 25 002 004 007 009 011 013 016 018 019 021 021.EP 024 025 027 028 030 031 031.EP 032 033 035 038 040 042 044
Chapter 8: Areas of Polygons and Circles
8.1 34 001 003 004 006 007 008 009 011 013 015 017 018 019 022 023 025 028.MI 028.MI.SA 029 031 034 036 037 039.MI 039.MI.SA 041 041.EP 042 045 047 050 051 051.EP 054
8.2 33 001 005 009 009.EP 011 011.EP 013 015 018 019 020 021 024 026 027 028 030 031 033 034 035 036 039 041 043 045 045.EP 049 050 051 052 054 055
8.3 24 002 004 006 008 010 012 013 015 017 019 019.EP 022 024 026 028 029 029.EP 031 033 035 036 036.EP 038 042
8.4 28 002 004 007 009 010 012 013 015 016 018 019.MI 019.MI.SA 020 023 023.EP 024 026 029 030 033 035 037 038 042 043 044 044.EP 048
8.5 27 003 004 005 006 009 011 013 015 016 016.EP 018 020 021 023 025 027 027.EP 030.MI 030.MI.SA 032 034 035 038 040 042 042.EP 046
Chapter 9: Surfaces and Solids
9.1 29 002 004 006 007 009 011 014 016 019 020 022 024 024.EP 025 026 029 029.EP 033 034 035.MI 035.MI.SA 037 038 041 042 044 044.EP 046 047
9.2 25 001 002 003 005 007 009 011 012 014 016 019 021 021.EP 022 025 029 030 030.EP 033 034 035 039 040 043 045
9.3 29 001 004 006 007 009 010 012 014 016 018 021 022 022.EP 025 025.EP 026 027 029 031 032 035 037.MI 037.MI.SA 038 039 041 042 045 047
9.4 30 004 006 007 008 009 010 011 011.EP 012 015 017 017.EP 020 021 024 026 028.MI 028.MI.SA 029 031 035 036 036.EP 039 041 042 043 044 045 046
Chapter 10: Analytic Geometry
10.1 30 002 004 004.EP 005 007 008 009 012 014 016 017 019 019.EP 020 022 024 026 027 027.EP 029 032 033 035 038 040 041 046 048 050.MI 050.MI.SA
10.2 28 001 003 005 007 009 011 013 015 015.EP 017 019 022 024 026 027 028 030 032 033 035 036.MI 036.MI.SA 038 038.EP 040 041 044 047
10.3 23 001 002 003 011 012 013 014 015 016 020 023 024 025 026 027 027.EP 029 030 037 037.EP 038 040 041
10.4 28 002 004 005 006 008 009 012 016 018 019 020 021 022 023 024 025.MI 025.MI.SA 026 027 028 028.EP 029 030 031 032 033 034 035
10.5 32 003 006 007 008 009 010 012.MI 012.MI.SA 013 015 017 019 020 022 022.EP 023 025 027 028 031 031.EP 033 034 035.MI 035.MI.SA 038 039 042 043 043.EP 046 048
10.6 28 003 004 005 006 008 009 011 012 012.EP 014 016.MI 016.MI.SA 018 019 021 023 025 027 027.EP 028 033 034 035 037 039 040 041 045
Chapter 11: Introduction to Trigonometry
11.1 22 001 003 005 007 008 011 012 015 016 018 020 021 023 025 027 028 028.EP 030 034 034.EP 037 040
11.2 23 001 003 005 008 009 011 013 015 017 018 020 022 023 024 027 028 029 031 033 036 038 042 044
11.3 28 001 002 003 005 006 007 009 011 013 015 017 019 021 022 023 025 027 029 031 033 036 039 040 042 044 044.EP 046 049
11.4 23 001 003 005 008 011 012 014 015 017 018 020 022 024 026 028 029 030 032 034 036 038 042 045
Total 1501