Calculus: An Applied Approach 10th edition

Textbook Cover

Ron Larson
Publisher: Cengage Learning

enhanced content

Cengage Unlimited

Included in a Cengage Unlimited subscription. Learn More

eBook

eBook

Your students have access to an online version of the textbook that might contain additional interactive features.

personal study plan

Personal Study Plan Module

Your students can use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

course pack

Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.


  • Larson Calculus: An Applied Approach 10e

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A $100.00
High School $21.50 $35.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

  • Chapter 1: Functions, Graphs, and Limits
    • 1.1: The Cartesian Plane and the Distance Formula (33)
    • 1.2: Graphs of Equations (34)
    • 1.3: Lines in the Plane and Slope (41)
    • 1.4: Functions (43)
    • 1.5: Limits (51)
    • 1.6: Continuity (32)
    • 1: Quiz Yourself
    • 1: Review Exercises
    • 1: Test Yourself

  • Chapter 2: Differentiation
    • 2.1: The Derivative and the Slope of a Graph (44)
    • 2.2: Some Rules for Differentiation (49)
    • 2.3: Rates of Change: Velocity and Marginals (31)
    • 2.4: The Product and Quotient Rules (49)
    • 2.5: The Chain Rule (52)
    • 2.6: Higher-Order Derivatives (30)
    • 2.7: Implicit Differentiation (31)
    • 2.8: Related Rates (30)
    • 2: Quiz Yourself
    • 2: Review Exercises
    • 2: Test Yourself

  • Chapter 3: Applications of the Derivative
    • 3.1: Increasing and Decreasing Functions (33)
    • 3.2: Extrema and the First-Derivative Test (32)
    • 3.3: Concavity and the Second-Derivative Test (39)
    • 3.4: Optimization Problems (34)
    • 3.5: Business and Economics Applications (29)
    • 3.6: Asymptotes (53)
    • 3.7: Curve Sketching: A Summary (34)
    • 3.8: Differentials and Marginal Analysis (31)
    • 3: Quiz Yourself
    • 3: Review Exercises
    • 3: Test Yourself

  • Chapter 4: Exponential and Logarithmic Functions
    • 4.1: Exponential Functions (22)
    • 4.2: Natural Exponential Functions (28)
    • 4.3: Derivatives of Exponential Functions (27)
    • 4.4: Logarithmic Functions (56)
    • 4.5: Derivatives of Logarithmic Functions (53)
    • 4.6: Exponential Growth and Decay (31)
    • 4: Quiz Yourself
    • 4: Review Exercises
    • 4: Test Yourself

  • Chapter 5: Integration and Its Applications
    • 5.1: Antiderivatives and Indefinite Integrals (45)
    • 5.2: Integration by Substitution and the General Power Rule (33)
    • 5.3: Exponential and Logarithmic Integrals (35)
    • 5.4: Area and the Fundamental Theorem of Calculus (53)
    • 5.5: The Area of a Region Bounded by Two Graphs (29)
    • 5.6: The Definite Integral as the Limit of a Sum (32)
    • 5: Quiz Yourself
    • 5: Review Exercises
    • 5: Test Yourself

  • Chapter 6: Techniques of Integration
    • 6.1: Integration by Parts and Present Value (48)
    • 6.2: Integration Tables (34)
    • 6.3: Numerical Integration (34)
    • 6.4: Improper Integrals (29)
    • 6: Quiz Yourself
    • 6: Review Exercises
    • 6: Test Yourself

  • Chapter 7: Functions of Several Variables
    • 7.1: The Three-Dimensional Coordinate System (31)
    • 7.2: Surfaces in Space (35)
    • 7.3: Functions of Several Variables (34)
    • 7.4: Partial Derivatives (43)
    • 7.5: Extrema of Functions of Two Variables (30)
    • 7.6: Lagrange Multipliers (31)
    • 7.7: Least Squares Regression Analysis (27)
    • 7.8: Double Integrals and Area in the Plane (41)
    • 7.9: Applications of Double Integrals (25)
    • 7: Quiz Yourself
    • 7: Review Exercises
    • 7: Test Yourself

  • Chapter 8: Trigonometric Functions
    • 8.1: Radian Measure of Angles (29)
    • 8.2: The Trigonometric Functions (49)
    • 8.3: Graphs of Trigonometric Functions (44)
    • 8.4: Derivatives of Trigonometric Functions (51)
    • 8.5: Integrals of Trigonometric Functions (43)
    • 8: Quiz Yourself
    • 8: Review Exercises
    • 8: Test Yourself

  • Chapter 9: Probability and Calculus
    • 9.1: Discrete Probability (27)
    • 9.2: Continuous Random Variables (28)
    • 9.3: Expected Value and Variance (30)
    • 9: Review Exercises
    • 9: Test Yourself

  • Chapter 10: Series and Taylor Polynomials
    • 10.1: Sequences (40)
    • 10.2: Series and Convergence (45)
    • 10.3: p-Series and the Ratio Test (45)
    • 10.4: Power Series and Taylor's Theorem (38)
    • 10.5: Taylor Polynomials (20)
    • 10.6: Newton's Method (33)
    • 10: Quiz Yourself
    • 10: Review Exercises
    • 10: Test Yourself

  • Chapter 11: Differential Equations
    • 11.1: Solutions of Differential Equations (26)
    • 11.2: Separation of Variables (27)
    • 11.3: First-Order Linear Differential Equations (19)
    • 11.4: Applications of Differential Equations (19)
    • 11: Quiz Yourself
    • 11: Review Exercises
    • 11: Test Yourself

  • Chapter A: Precalculus Review
    • A.1: The Real Number Line and Order (25)
    • A.2: Absolute Value of a Real Number (26)
    • A.3: Exponents and Radicals (24)
    • A.4: Factoring Polynomials (24)
    • A.5: Fractions and Rationalization (19)

  • Chapter B: Alternate Introduction to the Fundamental Theorem of Calculus
    • B.1: Alternate Introduction to the Fundamental Theorem of Calculus


Calculus: An Applied Approach, 10th edition, by Ron Larson motivates students while fostering understanding and mastery. The book emphasizes integrated and engaging applications that show students the real-world relevance of topics and concepts. Applied problems drawn from government sources, industry, current events, and other disciplines provide well-rounded examples and appeal to students' diverse interests. The WebAssign component to this textbook engages students with immediate feedback, rich tutorials, video instruction, a Personal Study Plan, and a complete eBook.

New for Fall 2019!


Platform Updates

  • New MindTap Reader eBook now supported by HTML5 (non-flashed based) includes embedded media assets for a more integrated study experience
  • Coming soon! An all new, (non-flashed based) interactive graphing tool!
  • New WebAssign Student User Experience that empowers learning at all levels with an upgraded, modern student interface

    Take a Fresh Look at WebAssign

    Coming this Fall, WebAssign is updating to better address the needs and expectations of today's students. Learn about the changes coming to WebAssign-which have been developed to ensure support across changing course models and teaching curricula.

What's New for Applied Calculus?

Our Solutions
Prerequisite and Remediation Help
  • More Watch It videos that provide step-by-step instruction Ideal for visual learners
  • More Algebra remediation exercises for question-level support that targets prerequisite algebra concepts
Test Prep and Preparedness
  • More Coded review exercises that can be assigned for no credit to allow for extra pre-exam practice
Tools to Reveal Student Thinking
  • More Master It tutorials (labeled MIs) that guide students through the steps they must take to work through given problems
  • New Expanded Problems question types that reveal student thinking and help them demonstrate their work
  • More Stand-Alone Master It exercises (labeled MI.SAs) that enable students to show their work by answering each of the steps associated with a similar version of a given problem

More Features:

  • Read It links under each question quickly jump to the corresponding section of a complete eBook.
  • Course Packs with ready-to-use assignments were built by subject matter experts specifically for this textbook to save you time, and can be easily customized to meet your teaching goals.
  • A Personal Study Plan lets your students use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key
MI - Master It
MI.SA - Stand Alone Master It
SBS - Step by Step
XP - Extra Problem


Question Availability Color Key
BLACK questions are available now
GRAY questions are under development


Group Quantity Questions
Chapter A: Precalculus Review
A.1 25 001 002 003 004 005 006 007 008 009.MI 009.MI.SA 010 011 012 013.MI 013.MI.SA 014 015 016 017 018.MI 018.MI.SA 019 020 021 022 023 024 025 026.SBS 027 028 029 030 031 032 033 034 035 036 501.XP 502.XP 503.XP
A.2 26 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018.SBS 019 020 021 022 023 024 025 026 027 028.MI 028.MI.SA 029 030 031 032 033 034 035 036 037 038 039 040 041 501.XP.MI 501.XP.MI.SA 502.XP 503.XP.MI 503.XP.MI.SA 504.XP 505.XP 506.XP
A.3 24 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026.SBS 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046.MI 046.MI.SA 047 048 049 050 051 052 053 054 055 056 057.MI 057.MI.SA 058
A.4 24 001 002.MI 002.MI.SA 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036.MI 036.MI.SA 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068.SBS 069 070 071 072 073 074 075 076
A.5 19 001 002 003 004 005 006 007 008 009 010 011 012 013.MI 013.MI.SA 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030.MI 030.MI.SA 031 032 033 034.SBS 035 036.MI 036.MI.SA 037 038 039 040 041 042 501.XP
Chapter 1: Functions, Graphs, and Limits
1.R 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128
1.1 33 002 003 004 005 006 010 011 012 014 016 018 020 021.SBS 022 023 024.MI 024.MI.SA 025 030 034 035 038 040.MI 040.MI.SA 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
1.2 34 002 003 004 006 006.EP 008 009 010 012 014 015 016 018 020 021 022 023.MI 023.MI.SA 025 027 029 031 033 034 035 037 039 040 041 042 044 046 048 050 052 054 055 057 058 059 060 066 068 070 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP 505.XP 506.XP 507.XP.SBS 508.XP
1.3 41 001 002 004 005 006 008 009.MI 009.MI.SA 011 013 014 015 017 020 023 024 026 028 029 030.MI 030.MI.SA 032 035 036 038 040 041 042 044 047 050 050.EP 052 052.EP 053 054 056 058 059 061 062 063 065 067 068 069 071 073 074 076 077 078 080 084 085 086 090 092 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP
1.4 43 002 006 007 010 012 014 016 017 018 020 022 026 028 030.MI 030.MI.SA 032 034 036 038 039 042 044 046 048 050 052 054.SBS 058 062 064 066 068 070 071.MI 071.MI.SA 072 075 078 080 082 084 501.XP 502.XP
1.5 51 002 004 006.MI 006.MI.SA 008 010 012 014 016 018 019 020 022.MI 022.MI.SA 024 026 028 030 032 034 036 038 039.MI 039.MI.SA 040.MI 040.MI.SA 042 044 046 048 050 052 054 056 057 058 060 062 064 066 068 070 072 074 076 501.XP 503.XP 504.XP 505.XP 506.XP 507.XP
1.6 32 002 004.MI 004.MI.SA 006 010 012 014 016 018 020 022 027 029 030.MI 030.MI.SA 032 034 040 042 046 048 052 054 056.SBS 057 060 061 062 063 068 501.XP 502.XP
Chapter 2: Differentiation
2.R 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 102 104 106 108 110 112 114
2.1 44 002 004 006 008 010 012 014 016 018 020 022.MI 022.MI.SA 024 026 028 030 032 034 036 038 040 042 044 046 048 050 050.EP 052 052.EP 054 056 057 058 060 062 064 066 068 070 501.XP 502.XP.MI 502.XP.MI.SA 503.XP.MI 503.XP.MI.SA 505.XP 506.XP
2.2 49 002 004 006 008 010 012 014 016 018 020 022 024 026.SBS 028 030 032 034 036 038 039 039.EP 040 040.EP 042 042.EP 044 046 048 050 052 054 056 058 060 062 063 063.EP 064 064.EP 065 065.EP 066.MI 066.MI.SA 068 068.EP 070 078 079 080 082 501.XP 502.XP 504.XP 505.XP 506.XP 507.XP
2.3 31 002 003 004 006.MI 006.MI.SA 008 010 012 014 016.MI 016.MI.SA 017 019 022 024 026.MI 026.MI.SA 028 030.MI 030.MI.SA 032 034 036 037 040 042 044 501.XP 502.XP 503.XP 504.XP
2.4 49 002 004 004.EP 005 006 008 008.EP 010.MI 010.MI.SA 012 012.EP 014 014.EP 016 016.EP 018 018.EP 020 020.EP 022 024 026.MI 026.MI.SA 028 030 032 034 036 038 040 042 044 046 048 050 052 054 055 056 058 060 062 064 064.EP 065 065.EP 066.MI 066.MI.SA 068 070 072 074 076 501.XP 502.XP 503.XP 504.XP 505.XP
2.5 52 002 004 006 008 010 012 014 016 018 020 022.MI 022.MI.SA 024 026 028 030 032 034 036 038 040 042 044 046 047 048 050 052 054 056.MI 056.MI.SA 058 060 062 064 066 068 068.EP 069 069.EP 070 070.EP 071 072 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 508.XP 509.XP
2.6 30 002.MI 002.MI.SA 004 008 008.EP 010 014 016 020.MI 020.MI.SA 022 026 028 028.EP 030 032 036 038 040 042 044 501.XP 503.XP.MI 503.XP.MI.SA 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 508.XP 509.XP 510.XP
2.7 31 002 004 007.MI 007.MI.SA 008 009 010 014 016 016.EP 018.MI 018.MI.SA 021 021.EP 023.SBS 024.MI 024.MI.SA 028 032 032.EP 034 036 038 041 044 046 048 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA
2.8 30 001 002 003 004 005.MI 005.MI.SA 006 009 012 014 015 016.MI 016.MI.SA 017.SBS 018 019.MI 019.MI.SA 020 021.MI 021.MI.SA 022 023 024 025.MI 025.MI.SA 026 501.XP 502.XP 503.XP 504.XP
Chapter 3: Applications of the Derivative
3.R 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 102 104 106 108 110 112 114
3.1 33 002 006 008 010 010.EP 012 012.EP 014 014.EP 016 018.MI 018.MI.SA 020 022.SBS 024 025 026 030 032.MI 032.MI.SA 034 036 038 040 044 047 048 050 052 053 054.MI 054.MI.SA 501.XP.MI 501.XP.MI.SA 502.XP 503.XP
3.2 32 002.MI 002.MI.SA 004 004.EP 005 006 008 010 012 012.EP 014 016 020 022 024.MI 024.MI.SA 026 027 028.SBS 030 030.EP 032 034 036 038 039 042 044 048 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 505.XP
3.3 39 002 006 006.EP 007.MI 007.MI.SA 009 009.EP 012 014 016 019 022 024 026 028 030 032 034 036 038 040 044 048 050 052 054 056 058 060 062 062.EP 064.SBS 066 070.MI 070.MI.SA 072 074 501.XP 502.XP 503.XP 504.XP 505.XP
3.4 34 001 001.EP 002 003 003.EP 004 006 006.EP 008 009 010 012 012.EP 013 013.EP 015 018 018.EP 020.MI 020.MI.SA 022 024 026 028 030.MI 030.MI.SA 032 033 035 037 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP
3.5 29 002.MI 002.MI.SA 004 007 008 011 014 016 018 020.MI 020.MI.SA 021 024 026 028 030 034 036 038 040 041.SBS 501.XP 502.XP 503.XP 504.XP 505.XP.MI 505.XP.MI.SA 506.XP 507.XP
3.6 53 002 004 006 008 010 012 014 016 018 020 022 024 026 027 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 501.XP.MI 501.XP.MI.SA 502.XP 503.XP 504.XP 505.XP 506.XP.SBS 507.XP 508.XP 509.XP 510.XP.MI 510.XP.MI.SA 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP
3.7 34 002 004 006.MI 006.MI.SA 008.MI 008.MI.SA 010.SBS 012 013.MI 013.MI.SA 015 018 020 022 026 028 030 031 032 033 038 040 042 044 046 048 050 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 506.XP 507.XP 508.XP
3.8 31 002 003 003.EP 004 006 008 010 012 014 016 016.EP 018 020 022 023 026.MI 026.MI.SA 030 032 034 034.EP 036 037.MI 037.MI.SA 038 040 042 501.XP 502.XP.MI 502.XP.MI.SA 503.XP.SBS 504.XP 505.XP 506.XP
Chapter 4: Exponential and Logarithmic Functions
4.R 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132
4.1 22 002 004 006.MI 006.MI.SA 008 010 011 012 014 016 018 020 024.MI 024.MI.SA 026 501.XP 502.XP 503.XP 504.XP.MI 504.XP.MI.SA 505.XP 506.XP
4.2 28 002 004 006 008 012.MI 012.MI.SA 014 022 026 028 030 032 034.MI 034.MI.SA 036.SBS 038 040 040.EP 042 044.MI 044.MI.SA 046 048 050 501.XP 502.XP 503.XP 504.XP 505.XP
4.3 27 004 006 008 009.MI 009.MI.SA 016 020 022 026 028 030 032 034 038 040 042.MI 042.MI.SA 044 046 047 050 052 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP
4.4 56 002 004 006.MI 006.MI.SA 008 010 012 014 016 020 022.MI 022.MI.SA 024 026 028 029 034 036 038.MI 038.MI.SA 039 042 046 048.MI 048.MI.SA 050.MI 050.MI.SA 054 056 058 060 062 064 066 070 072 073 074 076 077 078 080 082 084 085 086 088 090 098 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP
4.5 53 002 004 006 008 010 014 016 018.MI 018.MI.SA 022 024 026 028 030 032 034 036 038 040 042 044 046 049 049.EP 052 054.MI 054.MI.SA 056 058 060 062 064 064.EP 066 068 070 072 074 076 078 080 082 083 501.XP.MI 501.XP.MI.SA 502.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP
4.6 31 002 004.MI 004.MI.SA 006 008 010 012 014 016 018.MI 018.MI.SA 019 022 024 026 028 030 032 034.SBS 036 038 040 042 043 045 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
Chapter 5: Integration and Its Applications
5.R 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 101-102 104 106 108 110 112 114
5.1 45 002 004 006 008 010 012 014.MI 014.MI.SA 016 018 020 022 024 026 028 030 032 034.MI 034.MI.SA 038 040 044 044.EP 047.MI 047.MI.SA 050 052 054 056 058 060 062.MI 062.MI.SA 064 064.EP 066 067 068 070 072 501.XP 502.XP 503.XP 506.XP 507.XP 508.XP.SBS 509.XP
5.2 33 002 004 006 008 010.MI 010.MI.SA 012 014 016.MI 016.MI.SA 018 020 024 026 028 031.MI 031.MI.SA 032.MI 032.MI.SA 034 036 040 044 050 052 054.MI 054.MI.SA 056 056.EP 057 058 060 501.XP 503.XP
5.3 35 002.MI 002.MI.SA 005 008 011 016 020 022 024.MI 024.MI.SA 026.SBS 028 030 032 034 038 042 044 048 050 052 054 055 056 501.XP 502.XP 503.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP.MI 510.XP.MI.SA 511.XP
5.4 53 001 002 004 006 008 010 012.MI 012.MI.SA 016 018 020 022 024 027.MI 027.MI.SA 030 030.EP 032 033 034.SBS 036 038 040 040.EP 042 044 046 048.MI 048.MI.SA 052 053 055 060 062 064 066 070 073 074 076 078 079 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 509.XP 510.XP 511.XP 512.XP 513.XP
5.5 29 001 002 003 004 006 008.MI 008.MI.SA 009 010 012 014 015 018 021 024 027 028 030 033 034 036 038 039 041 042 044.MI 044.MI.SA 045 046 048 050 051 052.MI 052.MI.SA 054 055 057 058 059 501.XP 505.XP 506.XP 507.XP
5.6 32 001 002.MI 002.MI.SA 004 008 010 011 012 014 015 016 017 018 020 022 026 028 029 030 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP 505.XP.SBS 506.XP 507.XP 508.XP.MI 508.XP.MI.SA 509.XP 510.XP 511.XP
Chapter 6: Techniques of Integration
6.R 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064
6.1 48 002 004 006 007 008 010 012 014 016 018.MI 018.MI.SA 020 022 026 028 032.MI 032.MI.SA 035 036 040 041 042 044 048 052 054 056 058 060 062 064 066 068.MI 068.MI.SA 070 072 073 074 076 078 080 082 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP
6.2 34 002 004.MI 004.MI.SA 006 008 010.SBS 012 014.MI 014.MI.SA 016 022 023 026 028 032 034 038 040 050 052 054 056 058 059 060 061.MI 061.MI.SA 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP
6.3 34 002.MI 002.MI.SA 003 006 010 012 014 016 018 020 022 024 025 026 028 032 034.MI 034.MI.SA 036 038 040.MI 040.MI.SA 042 044 046 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP
6.4 29 002 004 006 008 010.MI 010.MI.SA 011 014.MI 014.MI.SA 016 020 022 024 028 029 031.SBS 036 038.MI 038.MI.SA 040 042 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
Chapter 7: Functions of Several Variables
7.R 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 102 104
7.1 31 006 007 008 010 012 014 015.SBS 016.MI 016.MI.SA 020 022 024 026 028 030 032 034 036 038 040.MI 040.MI.SA 042 044 046 048 050 052 054 056 057 501.XP
7.2 35 002 004 006 008 010 012 014.MI 014.MI.SA 016 017 018 022 023 030 032 034 036 038 039 040 042 044 048.MI 048.MI.SA 049 050 501.XP 502.XP.SBS 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA 507.XP 508.XP
7.3 34 002 004 006.MI 006.MI.SA 008.MI 008.MI.SA 010 012 014 016 018 020 022 028 029 032 036 038 040 042 044 045.SBS 048 050 052 054 501.XP 502.XP 503.XP.MI 503.XP.MI.SA 505.XP.MI 505.XP.MI.SA 506.XP 507.XP
7.4 43 002.MI 002.MI.SA 006 010 011 014 016 018 019 022 024 026 028 030 032 034 036 038 042.MI 042.MI.SA 044 046 048 050 054 056 058 062 064 066 068 070 071.MI 071.MI.SA 072 501.XP.MI 501.XP.MI.SA 502.XP 503.XP.MI 503.XP.MI.SA 505.XP 506.XP 507.XP
7.5 30 002 004.MI 004.MI.SA 008 010.MI 010.MI.SA 012 020 022.MI 022.MI.SA 024 026 028 030 032 034 036 038.SBS 040 042 042.EP 044 046 048 048.EP 050.MI 050.MI.SA 052 054 501.XP 502.XP 503.XP
7.6 31 002 004 005.MI 005.MI.SA 008 010.MI 010.MI.SA 013 014 019 021.MI 021.MI.SA 026 028 030 031 033 035 036 040 042 043 044 501.XP.SBS 502.XP 503.XP 505.XP 506.XP.MI 506.XP.MI.SA 507.XP 508.XP
7.7 27 002 004 006 008 009.MI 009.MI.SA 010 012 016 018 020 022 024 026 028.MI 028.MI.SA 030 501.XP.SBS 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP.MI 507.XP.MI.SA 508.XP 509.XP
7.8 41 002 003 004 006 007.MI 007.MI.SA 008 010 012 014 016 018 020.MI 020.MI.SA 021 022.MI 022.MI.SA 024 026 028 029 030 032 034 036 038 042 044 046 048 052 054 056 058 501.XP.MI 501.XP.MI.SA 503.XP.MI 503.XP.MI.SA 504.XP 505.XP 506.XP
7.9 25 002 004 006 008 010 014 016.MI 016.MI.SA 018 020 021 024 026 028 030 032 033 034 036 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP.MI 504.XP.MI.SA
Chapter 8: Trigonometric Functions
8.R 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 102 104 106 108 110 112 114 116 118 120 122 124 126
8.1 29 001 003 005 006 008 009 010 012.MI 012.MI.SA 014 015 016 018 020 022 023 024 026 028 029 030 032 034 035 036 040 042.MI 042.MI.SA 044 046.SBS 048 049 050.MI 050.MI.SA 051 054 056 057 501.XP 502.XP 503.XP
8.2 49 002 003 006 008 010 012 014 016 018 020 021 023 026 027 030 031 032 033 039 040 041 042 045 046 048 050 055.MI 055.MI.SA 056.MI 056.MI.SA 057 059 062 072.SBS 074 076 078 080 082 084 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA 507.XP 508.XP
8.3 44 002.MI 002.MI.SA 004 006 008 010 011 012 014 016 018 020.MI 020.MI.SA 021 027 028 032 034 038 044 046 050 052 054 062 064 065 067 072 074 076 078 080 082 084 501.XP 502.XP.SBS 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP
8.4 51 002 004 006 008 010 011 012 014 015 016 018.MI 018.MI.SA 020 022 024 026 028 030 032 034 036 040 041 042 044.MI 044.MI.SA 046.SBS 048 050 052.MI 052.MI.SA 054 058 060 064 066 067 069 074 078 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP
8.5 43 001 004.SBS 006.MI 006.MI.SA 008 010 012 014 016 020.MI 020.MI.SA 022.MI 022.MI.SA 024 026 030 032 034 036 038 040 042 046 048 050 052 054 056 057 058 060 062 064 068 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP.MI 506.XP.MI.SA 507.XP 508.XP
Chapter 9: Probability and Calculus
9.R 001 003 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062
9.1 27 003 006 007 008 010 012 016 018 020 022 024 026 028 030.MI 030.MI.SA 032.SBS 034 036 038 501.XP.MI 501.XP.MI.SA 502.XP 503.XP.MI 503.XP.MI.SA 504.XP 505.XP 506.XP
9.2 28 002 004 006 008 010 012 014.SBS 016 018.MI 018.MI.SA 020 022 024 026 028 031 032 033 034 036 039 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP 505.XP 506.XP
9.3 30 002.SBS 003 014 016 018 020 022 024 026 028 030 032 034 036 037 040 042 044 046.MI 046.MI.SA 048 049 050 051 054 501.XP 502.XP.MI 502.XP.MI.SA 503.XP 504.XP
Chapter 10: Series and Taylor Polynomials
10.R 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070 072 074 076 078 080 082 084 086 088 090 092 094 096 098 100 102 104 106 108 110 112 114 116 118 120 122
10.1 40 002.MI 002.MI.SA 004 006 008 010 012 014 015 016.MI 016.MI.SA 018 020 022 024 026 027 032.SBS 034 038 048 050 052 054 056 058 060 062 064 066 068 070 072 073 501.XP 502.XP 503.XP 504.XP 505.XP.MI 505.XP.MI.SA
10.2 45 002 004 006 007 012.MI 012.MI.SA 014 016 020 022 023 024 026 028 030.MI 030.MI.SA 032 039 042 044 048 050 052 054 056 058 059 060 062 064 066 068 069.MI 069.MI.SA 070 072 074 501.XP.SBS 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
10.3 45 002 004 006 008 010.SBS 012 014 016.MI 016.MI.SA 017 018 020 022 024.MI 024.MI.SA 026 027 028 030.MI 030.MI.SA 032 034 036 038 040 041 042 044 046 048 050 052 054 056 058 060 062 064 066 501.XP 502.XP 503.XP.MI 503.XP.MI.SA 504.XP 505.XP
10.4 38 002 004 006.SBS 009 010.MI 010.MI.SA 012.MI 012.MI.SA 014 016 020 022 026 028 030 032 034 036 039 040 042 044 046 048 050 052 053 058 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP.MI 508.XP.MI.SA 509.XP
10.5 20 002 004 006 008 010 012 014 016 018 019 026.MI 026.MI.SA 028.MI 028.MI.SA 030.MI 030.MI.SA 032 036 501.XP.SBS 502.XP
10.6 33 002.SBS 004 006 007 008 010 012 014 016 018 020 022 024 025 026 027.MI 027.MI.SA 028 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP.MI 513.XP.MI.SA 514.XP
Chapter 11: Differential Equations
11.R 002 004 006 008 010 012 014 016 018 020 022 024 026 028 030 032 034 036 038 040 042 044 046 048 050 052 054 056 058 060 062 064 066 068 070 072 074 076
11.1 26 002 004 006 008 012 014 016.MI 016.MI.SA 017 020 021 024 025 026.MI 026.MI.SA 030 031 032 036.MI 036.MI.SA 037.MI 037.MI.SA 040 042 044 046
11.2 27 002 004 006 007 009 012.MI 012.MI.SA 013 015 017 019 020 023 025 026 027 028 030 031.MI 031.MI.SA 033 035 038 040 041 044 045
11.3 19 002 005 006 007 008 009 011 014 016 017 020 022 023 024 026 027 029 030 032.MI 032.MI.SA 033 034 035 038 039 040 501.XP 502.XP
11.4 19 002 004 006 008 010 013 015 017 018 021 024 026 028 030 031 032.MI 032.MI.SA 034.MI 034.MI.SA
Total 2452 (808)