# Elementary Linear Algebra (Metric Version) 8th edition

Ron Larson
Publisher: Cengage Learning

## Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

• Larson Elementary Linear Algebra (Metric) 8e

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term N/A N/A
Higher Education Multi-Term N/A \$125.00
High School N/A \$50.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 1: Systems of Linear Equations
• 1.1: Introduction to Systems of Linear Equations (44)
• 1.2: Gaussian Elimination and Gauss-Jordan Elimination (39)
• 1.3: Applications of Systems of Linear Equations (22)
• 1: Review Exercises (12)

• Chapter 2: Matrices
• 2.1: Operations with Matrices (46)
• 2.2: Properties of Matrix Operations (46)
• 2.3: The Inverse of a Matrix (40)
• 2.4: Elementary Matrices (35)
• 2.5: Markov Chains (23)
• 2.6: More Applications of Matrix Operations (14)
• 2: Review Exercises (20)

• Chapter 3: Determinants
• 3.1: The Determinant of a Matrix (30)
• 3.2: Determinants and Elementary Operations (24)
• 3.3: Properties of Determinants (34)
• 3.4: Applications of Determinants (35)
• 3: Review Exercises (16)
• 3: Cumulative Test

• Chapter 4: Vector Spaces
• 4.1: Vectors in Rn (37)
• 4.2: Vector Spaces (26)
• 4.3: Subspaces of Vector Spaces (28)
• 4.4: Spanning Sets and Linear Independence (42)
• 4.5: Basis and Dimension (39)
• 4.6: Rank of a Matrix and Systems of Linear Equations (31)
• 4.7: Coordinates and Change of Basis (27)
• 4.8: Applications of Vector Spaces (36)
• 4: Review Exercises (18)

• Chapter 5: Inner Product Spaces
• 5.1: Length and Dot Product in Rn (45)
• 5.2: Inner Product Spaces (40)
• 5.3: Orthonormal Bases: Gram-Schmidt Process (28)
• 5.4: Mathematical Models and Least Squares Analysis (24)
• 5.5: Applications of Inner Product Spaces (39)
• 5: Review Exercises (6)
• 5: Cumulative Test

• Chapter 6: Linear Transformations
• 6.1: Introduction to Linear Transformations (31)
• 6.2: The Kernel and Range of a Linear Transformation (25)
• 6.3: Matrices for Linear Transformations (25)
• 6.4: Transition Matrices and Similarity (18)
• 6.5: Applications of Linear Transformations (37)
• 6: Review Exercises (5)

• Chapter 7: Eigenvalues and Eigenvectors
• 7.1: Eigenvalues and Eigenvectors (22)
• 7.2: Diagonalization (21)
• 7.3: Symmetric Matrices and Orthogonal Diagonalization (24)
• 7.4: Applications of Eigenvalues and Eigenvectors (34)
• 7: Review Exercises (5)
• 7: Cumulative Test

• Chapter 8: Complex Vector Spaces (online)
• 8.1: Complex Numbers
• 8.2: Conjugates and Division of Complex Numbers
• 8.3: Polar Form and DeMoivre's Theorem
• 8.4: Complex Vector Spaces and Inner Products
• 8.5: Unitary and Hermitian Matrices
• 8: Review Exercises

• Chapter 9: Linear Programming (online)
• 9.1: Systems of Linear Inequalities
• 9.2: Linear Programming Involving Two Variables
• 9.3: The Simplex Method: Maximization
• 9.4: The Simplex Method: Minimization
• 9.5: The Simplex Method: Mixed Constraints
• 9: Review Exercises

• Chapter 10: Numerical Methods (online)
• 10.1: Gaussian Elimination with Partial Pivoting
• 10.2: Iterative Methods for Solving Linear Systems
• 10.3: Power Method for Approximating Eigenvalues
• 10.4: Applications of Numerical Methods
• 10: Review Exercises

Elementary Linear Algebra (Metric Version), 8th edition, by Ron Larson provides a clear, careful, and concise presentation of material, written so that students can fully understand how mathematics works. This program balances theory with examples, applications, and geometric intuition for a complete, step-by-step learning system. Data and applications reflect current statistics and examples to engage students and demonstrate the link between theory and practice. This title is supported by WebAssign with an eBook, instant student feedback, and a Course Pack of premade assignments. The companion website LarsonLinearAlgebra.com also offers free access to multiple tools and resources to supplement students' learning.

## Features

• Master It Tutorials show students how to solve a similar problem in multiple steps by providing direction along with derivation so students understand the concepts and reasoning behind the problem solving.
• A Course Pack with ready-to-use assignments built by subject matter experts specifically for this textbook is designed to save you time, and can be easily customized to meet your teaching goals.
• Many problems include detailed stepped-out solutions, available to students at each instructor's discretion.
Use the Textbook Edition Upgrade Tool to automatically update all of your assignments from the previous edition to corresponding questions in this textbook.

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
MI - Master It
SBS - Step by Step
XP - Extra Problem

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Systems of Linear Equations
1.R 12 004 007 016 022 023 029 033 044 048 060 064 070
1.1 44 001 002 003 005 007 008 009 011 015 019 021 023 025 027 031 035 037 039 045 049 051 053 055 057 059 060 061 063 065 067 068.MI 068.MI.SA 071 072 073 076 077 079 083 084 085 091.SBS 092 093
1.2 39 001 003 005 008 010 011 013 015 017 019 023.SBS 026 027 029 031 033 035 037 039 040 041 043 045 046 047.MI 047.MI.SA 048 049 051 052 053 054 055 056 061 063 065 066 068
1.3 22 003 005 007 009 013 015 017 021 023 024 025 029 030 031 032 033 035 037 038 039 501.XP 502.XP.SBS
Chapter 2: Matrices
2.R 20 003 009 011 016 019 028 029 032 042 044 049 053 057 061 068 072 075 082 084 085
2.1 46 002 003 004.MI 004.MI.SA 005 006 007 008 009 010 011 013.SBS 014 015 017 018 019 021 022 029 032 035 037 039 041 043 045 047 049 051 053 054 055 057 058 059 061 063 065 077 078 079 080 083 086 501.XP
2.2 46 002 003 004.MI 004.MI.SA 005 007 009 010 011 013 015 017 018 019 021 022 023 024 025 026 027 028 029 033 034 035 037 038 039 040 041 043.SBS 044 045 046 047 049 050 051 053 054 057 059 068 071 073
2.3 40 001 002 003 005.SBS 007 009 011 013 015 017 020 021 022 025 027 031 032.MI 032.MI.SA 033 034 036.MI 036.MI.SA 037 041 043 045 047 048 049 051 053 055 056 057 058 059 064 075 079 082
2.4 35 001 005 007 009 011 012 013 015 017 019 020 021 022 023 025 027 028 029 031 033 035 039 040 042 043 045 046 047 048 049 050 051 053 054.SBS 501.XP
2.5 23 001 002 004 005 007 009 011 012 013 014 015 016 017 025 033 037 038 040 041 045 050 051 501.XP
2.6 14 001 005 007 009 011.SBS 012 015 016 017 019 023 025 501.XP 502.XP
Chapter 3: Determinants
3.R 16 010 012 024 025 027 031 035 041 050 059 063 065 068 069 071 077
3.1 30 001 003 005 007 011 013 015 016 019 021 023 029 031 034 036 038 039 041 044 047 048.SBS 049 051 054 057 058 059 063 067 501.XP
3.2 24 001 003 005 006 007 014 017 021 022.SBS 023 024 025 027 031 035 038 039 040 041 045 046 501.XP 502.XP 503.XP
3.3 34 001 002 003 005 007.SBS 009 012 013 015 017 018 019 021 022 024 025 028 029 033 035 039 041 043 047 051 055 056 058 072 073 077 081 082 501.XP
3.4 35 001 002 005 007 009.SBS 011 012 013 018 021 024 025 027 029 031 033 036 039 040 041 043 046 048 052 056 058 059 062 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP
Chapter 4: Vector Spaces
4.R 18 003 007 012 015 023 037 044 050 055 062 065 069 084 090 093 097 101 110
4.1 37 001 002 003 007 010 011 013 015 017 019 021.SBS 024 026 027 028 029 030 032 033 034 035 038 039 040 041 045 048 049 051 052 053 054 055 062 067 501.XP 502.XP
4.2 26 001 003 005 006 007 008 009 010 013 016 017 020 021 022 025 027 029 032 033 035 037.SBS 042 043 045 047 050
4.3 28 001 003 005 007 009 010 011 014 019 020 022 024 025.SBS 028 029 031 032 034 035 037 038 041 042 045 501.XP 502.XP 503.XP 504.XP
4.4 42 001 002 003 004 005 008 009 013 016 017 018 019 021 023 024 025 027 032 033 035 036 037 039 041 043 044 045 046 049 051 053 056 057 060 061 062 065 069 071 501.XP.SBS 502.XP 503.XP
4.5 39 001 004 005 006 007 008 009 011 015 019 021 022 023 029 031 032 035 036 037 039 043 044 045 047 049 050 051 053 056 057 061.SBS 065 067 071 073 075 076 077 078
4.6 31 001 003 005 010 011 013 015.SBS 017 019 020 021 022 025 027 031 034 037 040 041 042 043 045 047 049 052 054 060 066 078 081 501.XP
4.7 27 001 003 005 007 009 011 012 013 015 017 019.SBS 021 023 025 030 031 033 036 037 039 040 041 042 047 048 049 501.XP
4.8 36 001 003 005 007 008 009 012 015 017 018.SBS 019 023 026 027 028 031 032 033 036 043 045 047 051 056 059 063 064 068 071 073 075 077 081 501.XP 502.XP 503.XP
Chapter 5: Inner Product Spaces
5.R 6 002 013 022 040 055 084
5.1 45 001 002 004 005 008 009 011 013 016 017 018 019 021 022 023 026 028 029 031 035 039 041 044 045 047 048 051 053 054 055 058 059 060 063 065.SBS 068 071 075 077 078 079 501.XP 502.XP 503.XP 504.XP
5.2 40 001 005 006 009 015 017 019 022 023 024 026 027 029 031 032 033 034 035 037 039 042 043 045 047 049 051 053 057.SBS 061 063 065 066 071 073 074 077 079 081 097 501.XP
5.3 28 001 005 006 008 010 013 015 019 021 023 025 027 029 031 032 035 037 039 041 043 045.SBS 049 052 059 062 067 501.XP 502.XP
5.4 24 001 004 005 006 007 009 011 017 019 021 023 025 028 029 031 035 037 041 501.XP 502.XP 503.XP.SBS 504.XP 505.XP 506.XP
5.5 39 003 004 007 010 013 014 015 018 021 023 027 033 035 036 038.MI 038.MI.SA 039 040 042 043 046 047.SBS 049 050 051 053 054 066 067 069 072 073 074 075 077 082 087 501.XP 502.XP
Chapter 6: Linear Transformations
6.R 5 013 030 045 058 089
6.1 31 001 004 005 007 009 013 014 017 019 021 023 025 027 029 031 033 034 037 043 048 049 051 052 055 056 057 060 061 064 069 501.XP.SBS
6.2 25 001 003 004 005 006 009 011 013 017 019 021 027.SBS 029 034 035 040 041 047 049 051 056 057 059 060 067
6.3 25 001 003 005 006 007 008 011 013 015 016 017 021 025 027 031 032 034 035 037 043 044 045 057 501.XP.SBS 502.XP
6.4 18 001 003 004 005 007 009 011 013 015 017 019 021 023 024 026.SBS 028 029 037
6.5 37 001 003 004 005 007 011 013 015 016 018 019 020 022 023 024.SBS 027 029 031 036 037 038 039 041 044 045 051 052 053 055 057 059 063 064 068 069 070 501.XP
Chapter 7: Eigenvalues and Eigenvectors
7.R 5 004 019 035 049 073
7.1 22 001 004 006 009 011 013 015 019 021 025 029 036 039 041 045 062.SBS 065 071 075 078 501.XP 502.XP.SBS
7.2 21 001 005 006 007 009 013 015 019.SBS 023 024 026 027 028 029 033 035 039 043 049 050 501.XP
7.3 24 001 003 007 010 011 012 013 016 019 025 033 039 041 043 045 047 048 049 051 058 060 501.XP 502.XP 503.XP
7.4 34 001 003 004 005 007 010 011 013 015 019 021 023 027 029 031 033 035 037 038 039 043 045 047 049 053 054 057 059 065 066 501.XP.SBS 502.XP 503.XP 504.XP
Chapter 8: Complex Vector Spaces (online)
8 0
Chapter 9: Linear Programming (online)
9 0
Chapter 10: Numerical Methods (online)
10 0
Total 1193