.

Calculus: Early Transcendental Functions 4th edition

Textbook Cover

Larson, Hostetler, and Edwards
Publisher: Cengage Learning

enhanced content

Enhanced Webassign

Includes pedagogical tools such as assignable simulations, textbook examples, links to the eBook, and algorithmic solutions. Specific features vary from book to book.

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

Try an Example Assignment


Terms of Use

Access is contingent on use of this textbook in the instructor's classroom.

Student Pricing

Academic Term Homework Homework and eBook eBook Upgrade
Semester $47.00 $75.00 $35.00
Quarter $47.00 $75.00 $35.00
Multi-term $65.00 $110.00 $55.00
High School $38.75 $61.75 $28.75

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

Table of Contents

  • Chapter 1: Preparation for Calculus
    • 1.1: Graphs and Models (26)
    • 1.2: Linear Models and Rates of Change (45)
    • 1.3: Functions and Their Graphs (21)
    • 1.4: Fitting Models to Data (16)
    • 1.5: Inverse Functions (28)
    • 1.6: Exponential and Logarithmic Functions (21)
    • 1: Chapter Review

  • Chapter 2: Limits and Their Properties
    • 2.1: A Preview of Calculus (10)
    • 2.2: Finding Limits Graphically and Numerically (23)
    • 2.3: Evaluating Limits Analytically (26)
    • 2.4: Continuity and One-Sided Limits (25)
    • 2.5: Infinite Limits (20)
    • 2: Chapter Review

  • Chapter 3: Differentiation
    • 3.1: The Derivative and the Tangent Line Problem (40)
    • 3.2: Basic Differentiation Rules and Rates of Change (35)
    • 3.3: Product and Quotient Rules and Higher-Order Derivatives (32)
    • 3.4: The Chain Rule (30)
    • 3.5: Implicit Differentiation (26)
    • 3.6: Derivatives of Inverse Functions
    • 3.7: Related Rates (23)
    • 3.8: Newton's Method (16)
    • 3: Chapter Review

  • Chapter 4: Applications of Differentiation
    • 4.1: Extrema on an Interval (23)
    • 4.2: Rolle's Theorem and the Mean Value Theorem (22)
    • 4.3: Increasing and Decreasing Functions and the First Derivative Test (17)
    • 4.4: Concavity and the Second Derivative Test (18)
    • 4.5: Limits at Infinity (34)
    • 4.6: A Summary of Curve Sketching (28)
    • 4.7: Optimization Problems (33)
    • 4.8: Differentials (23)
    • 4: Chapter Review

  • Chapter 5: Integration
    • 5.1: Antiderivatives and Indefinite Integration (43)
    • 5.2: Area (24)
    • 5.3: Riemann Sums and Definite Integrals (20)
    • 5.4: The Fundamental Theorem of Calculus (33)
    • 5.5: Integration by Substitution (34)
    • 5.6: Numerical Integration (22)
    • 5.7: The Natural Logarithmic Function: Integration (10)
    • 5.8: Inverse Trigonometric Functions: Integration (7)
    • 5.9: Hyperbolic Functions (10)
    • 5: Chapter Review

  • Chapter 6: Differential Equations
    • 6.1: Slope Fields and Euler's Method (7)
    • 6.2: Differential Equations: Growth and Decay (9)
    • 6.3: Differential Equations: Separation of Variables (9)
    • 6.4: The Logistic Equation (6)
    • 6.5: First-Order Linear Differential Equations (6)
    • 6.6: Predator-Prey Differential Equations
    • 6: Chapter Review

  • Chapter 7: Applications of Integration
    • 7.1: Area of a Region Between Two Curves (10)
    • 7.2: Volume: The Disk Method (9)
    • 7.3: Volume: The Shell Method (6)
    • 7.4: Arc Length and Surfaces of Revolution (7)
    • 7.5: Work (6)
    • 7.6: Moments, Centers of Mass, and Centroids (7)
    • 7.7: Fluid Pressure and Fluid Force (7)
    • 7: Chapter Review

  • Chapter 8: Integration Techniques, L'Hopital's Rule, and Improper Integrals
    • 8.1: Basic Integration Rules (9)
    • 8.2: Integration by Parts (11)
    • 8.3: Trigonometric Integrals (11)
    • 8.4: Trigonometric Substitution (13)
    • 8.5: Partial Fractions (7)
    • 8.6: Integration by Tables and Other Integration Techniques (7)
    • 8.7: Indeterminate Forms and L'Hopital's Rule (6)
    • 8.8: Improper Integrals (11)
    • 8: Chapter Review

  • Chapter 9: Infinite Series
    • 9.1: Sequences (13)
    • 9.2: Series and Convergence (13)
    • 9.3: The Integral Test and p-Series (8)
    • 9.4: Comparisons of Series (5)
    • 9.5: Alternating Series (10)
    • 9.6: The Ratio and Root Tests (13)
    • 9.7: Taylor Polynomials and Approximations (9)
    • 9.8: Power Series (10)
    • 9.9: Representation of Functions by Power Series (7)
    • 9.10: Taylor and Maclaurin Series (9)
    • 9: Chapter Review

  • Chapter 10: Conics, Parametric Equations, and Polar Coordinates
    • 10.1: Conics and Calculus (33)
    • 10.2: Plane Curves and Parametric Equations (24)
    • 10.3: Parametric Equations and Calculus (30)
    • 10.4: Polar Coordinates and Polar Graphs (34)
    • 10.5: Area and Arc Length in Polar Coordinates (25)
    • 10.6: Polar Equations of Conics and Kepler's Laws (21)
    • 10: Chapter Review

  • Chapter 11: Vectors and the Geometry of Space
    • 11.1: Vectors in the Plane (19)
    • 11.2: Space Coordinates and Vectors in Space (19)
    • 11.3: The Dot Product of Two Vectors (25)
    • 11.4: The Cross Product of Two Vectors in Space (13)
    • 11.5: Lines and Planes in Space (14)
    • 11.6: Surfaces in Space (6)
    • 11.7: Cylindrical and Spherical Coordinates (9)
    • 11: Chapter Review

  • Chapter 12: Vector Valued Functions
    • 12.1: Vector-Valued Functions (7)
    • 12.2: Differentiation and Integration of Vector-Valued Functions (11)
    • 12.3: Velocity and Acceleration (6)
    • 12.4: Tangent Vectors and Normal Vectors (8)
    • 12.5: Arc Length and Curvature (8)
    • 12: Chapter Review

  • Chapter 13: Functions of Several Variables
    • 13.1: Introduction to Functions of Several Variables (19)
    • 13.2: Limits and Continuity (19)
    • 13.3: Partial Derivatives (13)
    • 13.4: Differentials (5)
    • 13.5: Chain Rules for Functions of Several Variables (10)
    • 13.6: Directional Derivatives and Gradients (10)
    • 13.7: Tangent Planes and Normal Lines (7)
    • 13.8: Extrema of Functions of Two Variables (5)
    • 13.9: Applications of Extrema of Functions of Two Variables (7)
    • 13.10: Lagrange Multipliers (7)
    • 13: Chapter Review

  • Chapter 14: Multiple Integration
    • 14.1: Iterated Integrals and Area in the Plane (8)
    • 14.2: Double Integrals and Volume (8)
    • 14.3: Change of Variables: Polar Coordinates (8)
    • 14.4: Center of Mass and Moments of Inertia (7)
    • 14.5: Surface Area (5)
    • 14.6: Triple Integrals and Applications (8)
    • 14.7: Triple Integrals in Cylindrical and Spherical Coordinates (8)
    • 14.8: Change of Variables: Jacobians (5)
    • 14: Chapter Review

  • Chapter 15: Vector Analysis
    • 15.1: Vector Fields (7)
    • 15.2: Line Integrals (8)
    • 15.3: Conservative Vector Fields and Independence of Path (5)
    • 15.4: Green's Theorem (5)
    • 15.5: Parametric Surfaces (6)
    • 15.6: Surface Integrals (5)
    • 15.7: Divergence Theorem (5)
    • 15.8: Stokes's Theorem (5)
    • 15: Chapter Review

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key

BLACK questions are available now
GREY questions are under development


Group Quantity Questions
Chapter 1: Preparation for Calculus
1.1 26 001 004 009 011 017 020 036 050 054 056 057 061 064 066 069 071 073 075 076 077 081 082 083 084 085 086
1.2 45 001 002 004 007 010 012 013 014 015 016 018 020 021 022 023 026 028 029 031 032 033 034 035 038 039 040 042 048 049 054 056 059 060 061 064 068 069 072 077 078 079 081 082 084 089
1.3 21 003 006 011 014 018 024 025 031 035 043 046 048 061 063 066 070 085 087 088 095 096
1.4 16 001 002 003 004 005 006 007 008 009 010 011 012 014 015 016 018
1.5 28 009 010 012 018 020 028 031 032 033 040 042 045 046 050 051 062 070 073 074 088 090 095 097 100 112 128 132 135
1.6 21 002 006 012 016 018 028 032 034 035 045 048 050 060 064 073 081 083 084 085 086 092
Chapter 2: Limits and Their Properties
2.1 10 001 002 002.alt 003 004 005 006 007 008 010
2.2 23 001 002 013 014 020 021 022 024 027 029 030 032 033 034 038 039 044 046 047 050 060 062 063
2.3 26 005 006 007 011 013 014 016 018 020 024 034 038 042 046 053 058 063 065 072 086 092 094 107 108 110 128
2.4 25 008 012 016 022 031 042 046 048 052 058 064 065 066 076 077 078 091 094 103 106 112 113 114 115 117
2.5 20 002 005 009 012 019 020 031 032 033 042 047 048 053 057 064 066 067 068 069 072
Chapter 3: Differentiation
3.1 40 004 006 008 011 012 014 016 020 022 023 024 025 029 030 031 032 033 038 042 043 044 049 053.MI 054 056 057 058 065 067 074 079 082 085 086 087 088 091 092 095 100
3.2 35 001 002 003 004 005 010 016 022 025 028 029 030 031 032 034 035 039 041 042 045 048 058 066 093 094 095 096 101 103 104 105 108 109 114 115
3.3 32 002 007 012 016 025 027 031 033 037 040 041 043 048 051 069 073 075 077 078 081 085 087 088 092 096 098 106 107 114 121 134 141
3.4 30 001 002 012 013 015 018 021 022 024 025 028 031 034 038 047 055 056 057 064 102 110 111 114 154 156 159 160 161 162 175
3.5 26 002 006 012 016 021 023 025 026 028 030 036 037 038 039 040 045 047 052 055 059 075 077 082 088 092 095
3.7 23 001 002 003 004 005 006 008 013 014 020 025 026 027 028 029 030 032 033 034 035 040 042 044
3.8 16 001 002 005 006 007 008 010 011 013 018 019 020 025 026 034 042
Chapter 4: Applications of Differentiation
4.1 23 002 004 008 009 011 014 015 017 023 026 028 029 031 032 035 039 040 041 043 045 046 067 068
4.2 22 004 006 007 008 009 010 011 012 015 019 023 025 027 030 034 043 044 048 066 074 076 078
4.3 17 001 002 004 005 012 013 015 026 036 049 050 052 072 084 087 092 093
4.4 18 004 010 011 012 014 018 022 024 029 030 035 037 038 039 073 075 077 080
4.5 34 004 005 006 008 009 010 012 014 016 018 020 022 024 026 027 030 031 034 043 045 046 048 049 056 057 072 096 097 098 099 100 106 107 108
4.6 28 002 004 006 008 010 011 014 015 019 021 023 024 025 027 031 037 051 052 053 055 057 058 066 068 076 091 093 098
4.7 33 001 003 004 005 006 007 010 011 012 013 014 015 016 017 018 020 021 022 023 024 026 027 028 029 033 035 040 041 045 047 048 054 055
4.8 23 001 002 007 010 011 012 013 016 025 027 028 030 032 033 034 035 037 041 042 043 046 047 049
Chapter 5: Integration
5.1 43 006 007 008 009 010 011 012 016 017 019 020 021 026 027 028 029 030 031 032 034 037 038 053 054 064 066 067 068 070 073 074 077 079 080 082 083 085 089 090 091 092 093 101
5.2 24 002 003 004 005 007 009 010 011 013 016 017 019 022 030 032 034 038 043 044 047 061 066 083 084
5.3 20 006 009 012 021 022 023 026 028 029 034 036 042 043 045 047 048 049 072 078 079
5.4 33 001 003 006 008 011 015 017 018 019 024 026 028 029 042 046 048 054 057 062 063 074 075 076 077 079 080 099 101 103 104 108 109 112
5.5 34 002 005 007 008 010 012 014 018 023 026 027 030 036 038 048 050 058 060 085 093 096 099 114 116 117 119 139 147 148 149 151 152 153 158
5.6 22 003 004 006 008 010 011 012 013 020 021 022 027 029 033 034 040 048 049 050 051 052 053
5.7 10 004 014 022 028 032 034 056 064 070 094
5.8 7 004 010 018 024 044 054 066
5.9 10 004 014 020 026 040 052 060 070 078 082
Chapter 6: Differential Equations
6.1 7 018 024 026 032 040 050 054
6.2 9 002 010 018 024 028 042 050 056 062
6.3 9 002 010 016 018 024 030 038 044 060
6.4 6 006 010 019 020 033 034.alt
6.5 6 008 020 024 028 038 040
Chapter 7: Applications of Integration
7.1 10 014 018 030 044 060 064 066 078 086 088
7.2 9 004 008 012 018 020 024 032 034 050
7.3 6 002 010 014 022 028 042
7.4 7 004 010 024 030 034 064 066
7.5 6 002 010 016 020 026 034
7.6 7 002 008 010 016 028 036 050
7.7 7 004 006 008 010 014 016 026
Chapter 8: Integration Techniques, L'Hopital's Rule, and Improper Integrals
8.1 9 002 008 018 038 044 060 070 094 098
8.2 11 002 012 022 028 040 050 058 060 068 096 108
8.3 11 004 008 016 022 026 038 046 054 066 088 092
8.4 13 004 008 010 016 020 022 030 038 044 050 054 068 080
8.5 7 004 008 028 032 042 058 062
8.6 7 002 006 020 030 040 066 086
8.7 6 001 008 014 024 034 086
8.8 11 004 006 018 028 036 046 056 062 070 074 080
Chapter 9: Infinite Series
9.1 13 004 010 014 018 024 026 034 040 050 060 068 086 102
9.2 13 002 006 017 036 040 050 056 060 082 096 104 112 116
9.3 8 002 016 028 034 037 076 078 084
9.4 5 004 014 016 028 032
9.5 10 001 014 016 028 032 048 052 062 076 088
9.6 13 005 016 024 032 042 050 054 066 070 078 084 088 102
9.7 9 002 014 022 026 030 040 042 052 058
9.8 10 002 008 014 024 034 036 038 046 054 084
9.9 7 004 006 012 016 026 032 066
9.10 9 002 010 018 024 034 043 058 060 072
Chapter 10: Conics, Parametric Equations, and Polar Coordinates
10.1 33 002 006 009 012 017 020 024 026 032 038 039 040 046 053 060 067 070 074 081 082 087 088 089 094 098 100 101 103 104 109 111 118 119
10.2 24 005 007 009 013 014 015 021 029 031 039 040 041 042 043 045 047 049 051 055 057 059 062 067 072
10.3 30 001 002 005 006 012 016 020 024 025 038 041 044 049 053 054 055 056 057 064 069 070 080 083 084 087 089 092 094 096 098
10.4 34 005 007 009 011 018 024 026 028 029 033 036 037 040 043 047 050 052 053 057 060 063 066 069 077 081 083 089 091 093 095 096 101 107 109
10.5 25 001 002 008 010 013 016 018 023 024 031 038 041 042 046 049 051 052 057 059 066 069 070 071 072 074
10.6 21 001 003 008 012 014 017 024 031 032 033 035 037 039 051 052 053 054 055 059 060 064
Chapter 11: Vectors and the Geometry of Space
11.1 19 001 005 008 019 021 024 030 034 040 042 048 054 056 063 066 070 082 092 093
11.2 19 008 016 024 026 032 036 038 042 060 066 072 073 078 082 093 100 111 114 115
11.3 25 002 008 010 014 018 020 023 024 026 028 028.alt 031 034 036 041 042 046 060 071 072 073 074 077 079 086
11.4 13 002 003 006 008 009 012 028 034 041 042 046 048 054
11.5 14 018 022 026 038 044 048 052 056 076 090 094 096 096.nva 110
11.6 6 004 006 046 058 060 064
11.7 9 004 010 016 032 038 044 068 090 092
Chapter 12: Vector Valued Functions
12.1 7 002 008 018 048 058 070 076
12.2 11 012 018 020 026 030 040 046 050 056 058 066
12.3 6 010 016 020 026 034 050
12.4 8 006 012 024 030 032 036 044 066
12.5 8 008 012 022 028 032 040 044 072
Chapter 13: Functions of Several Variables
13.1 19 006 008 013 016 019 022 026 028 045 046 047 048 049 050 067 068 076 082 086
13.2 19 005 006 007 011 012 019 021 026 028 034 035 036 038 040 042 043 044 048 060
13.3 13 008 018 028 030 034 038 046 050 052 060 066 094 100
13.4 5 004 014 018 032 040
13.5 10 010 014 016 020 024 028 034 040 052 056
13.6 10 002 012 014 018 022 028 032 040 056 064
13.7 7 006 014 016 022 030 042 050
13.8 5 032 034 046 048 054
13.9 7 002 004 006 010 016 022 036
13.10 7 002 012 014 016 028 034 040
Chapter 14: Multiple Integration
14.1 8 002 010 018 024 026 036 062 080
14.2 8 002 012 014 022 030 042 050 054
14.3 8 006 010 018 022 030 034 042 052
14.4 7 004 012 020 028 032 040 046
14.5 5 002 010 016 020 026
14.6 8 008 016 018 024 034 052 064 070
14.7 8 006 010 014 022 024 032 034 038
14.8 5 002 012 016 018 030
Chapter 15: Vector Analysis
15.1 7 002 024 034 040 044 052 058
15.2 8 008 012 014 016 022 030 060 064
15.3 5 006 012 016 020 036
15.4 5 008 014 020 022 034
15.5 6 002 020 028 032 038 050
15.6 5 002 012 014 020 036
15.7 5 006 008 012 016 018
15.8 5 004 008 014 016 020
Total 1642  

WebAssign® is a registered service mark of North Carolina State University under license to Advanced Instructional Systems, Inc.

Copyright Information © 1997–2003 North Carolina State University. Portions © 2003– Advanced Instructional Systems, Inc.

Various trademarks held by their respective owners.

Main Office: 1791 Varsity Drive, Suite 200, Raleigh, NC 27606 | Tel (919) 829-8181 | Fax (919) 829-1516