# Linear Algebra: A Modern Introduction 4th edition

David Poole
Publisher: Cengage Learning

## Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

## Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

• Poole Linear Algebra: A Modern Approach 4e

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter 1: Vectors
• 1.0: Introduction: The Racetrack Game
• 1.1: The Geometry and Algebra of Vectors (35)
• 1.2: Length and Angle: The Dot Product (58)
• 1.3: Lines and Planes (35)
• 1.4: Applications (9)
• 1: Chapter Review

• Chapter 2: Systems of Linear Equations
• 2.0: Introduction: Triviality
• 2.1: Introduction to Systems of Linear Equations (26)
• 2.2: Direct Methods for Solving Linear Systems (40)
• 2.3: Spanning Sets and Linear Independence (40)
• 2.4: Applications (31)
• 2.5: Iterative Methods for Solving Linear Systems (15)
• 2: Chapter Review

• Chapter 3: Matrices
• 3.0: Introduction: Matrices in Action
• 3.1: Matrix Operations (31)
• 3.2: Matrix Algebra (35)
• 3.3: The Inverse of a Matrix (44)
• 3.4: The LU Factorization (25)
• 3.5: Subspaces, Basis, Dimension, and Rank (47)
• 3.6: Introduction to Linear Transformations (36)
• 3.7: Applications (44)
• 3: Chapter Review

• Chapter 4: Eigenvalues and Eigenvectors
• 4.0: Introduction: A Dynamical System on Graphs
• 4.1: Introduction to Eigenvalues and Eigenvectors (22)
• 4.2: Determinants (49)
• 4.3: Eigenvalues and Eigenvectors of n × n Matrices (29)
• 4.4: Similarity and Diagonalization (39)
• 4.5: Iterative Methods for Computing Eigenvalues (32)
• 4.6: Applications and the Perron-Frobenius Theorem (51)
• 4: Chapter Review

• Chapter 5: Orthogonality
• 5.0: Introduction: Shadows on a Wall
• 5.1: Orthogonality in ℜn (30)
• 5.2: Orthogonal Complements and Orthogonal Projections (21)
• 5.3: The Gram-Schmidt Process and the QR Factorization (15)
• 5.4: Orthogonal Diagonalization of Symmetric Matrices (24)
• 5.5: Applications (41)
• 5: Chapter Review

• Chapter 6: Vector Spaces
• 6.0: Introduction: Fibonacci in (Vector) Space
• 6.1: Vector Spaces and Subspaces (47)
• 6.2: Linear Independence, Basis, and Dimension (42)
• 6.3: Change of Basis (17)
• 6.4: Linear Transformations (24)
• 6.5: The Kernel and Range of a Linear Transformation (25)
• 6.6: The Matrix of a Linear Transformation (28)
• 6.7: Applications (14)
• 6: Chapter Review

• Chapter 7: Distance and Approximation
• 7.0: Introduction: Taxicab Geometry
• 7.1: Inner Product Spaces (29)
• 7.2: Norms and Distance Functions (33)
• 7.3: Least Squares Approximation (36)
• 7.4: The Singular Value Decomposition (42)
• 7.5: Applications (16)
• 7: Chapter Review

• Chapter 8: Codes (Online only)
• 8.1: Code Vectors (12)
• 8.2: Error-Correcting (8)
• 8.3: Dual Codes (11)
• 8.4: Linear Codes (9)
• 8.5: The Minimum Distance of a Code (8)

• Chapter A: Appendices
• A.A: Mathematical Notation and Methods of Proof
• A.B: Mathematical Induction
• A.C: Complex Numbers
• A.D: Polynomials
• A.E: Technology Bytes (Online only)

David Poole's innovative Linear Algebra: A Modern Introduction, 4th edition, emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding before computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems.

The WebAssign enhancement to this textbook, which includes an interactive eBook, is a fully customizable online solution that empowers students to learn, not just do homework. Insightful tools save time and highlight exactly where students are struggling. Students get an engaging experience, instant feedback, and better outcomes. A total win-win!

Features
• Watch It links provide step-by-step instruction with short, engaging videos that are ideal for visual learners.
• Master It Tutorials (MI) show how to solve a similar problem in multiple steps by providing direction along with derivation so students understand the concepts and reasoning behind the problem solving.
• Expanded Problem (EP) questions are expanded versions of existing questions that include intermediary steps to guide the student to the final answer.
• Course Packs with ready-to-use assignments built by subject matter experts specifically for this textbook are designed to save you time, and can be easily customized to meet your teaching goals.
• Lecture Videos are available as a textbook resource.
Use the Textbook Edition Upgrade Tool to automatically update all of your assignments from the previous edition to corresponding questions in this textbook.

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
MI - Master It Tutorial
EP - Expanded Problem
XP - Extra Problem

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Vectors
1.1 35 CV.001 CV.002 002 003 006 007 009 012 013 015 017 018.MI 018.MI.SA 021 024 025 026 027 031 033 035 036 038 039 042 044 045 046 048 049.MI 049.MI.SA 051 054 057 501.XP
1.2 58 CV.001 Exp.002 Exp.004 Exp.006 Exp.008 001 003 005 006 007 009 011 013 015 016 018 018.EP 020 020.EP 021 023 023.EP 024.MI 024.MI.SA 026 027 030 031 032 033 034.MI 034.MI.SA 035 036 037 038 039 040 042 045 046 048 049 051 052 053 055 057 058 059 060 061 063 066 067 068 069 070 072 074 501.XP
1.3 35 001 003 006 007.MI 007.MI.SA 009 011 012 013 015 017 018 018.EP 021 024 027 028.MI 028.MI.SA 030 032 033 034 036 037 040 041 042 043 045 045.EP 047 048 501.XP 502.XP 503.XP
1.4 9 003.MI 003.MI.SA 004 006 009 011 012.MI 012.MI.SA 013
Chapter 2: Systems of Linear Equations
2.1 26 003 006 007 009 011.MI 011.MI.SA 012 014 015 018 019 020 021 024 025 027 028 030 031 033 034.MI 034.MI.SA 036 036.EP 041 044
2.2 40 001 003 006 009 012.MI 012.MI.SA 014 015 017 018 019 021 023 025 027.MI 027.MI.SA 030 030.EP 031 032 033 036 038 039 040 042.MI 042.MI.SA 045 045.EP 048 049 054 056 057 059 060 501.XP 502.XP 503.XP 504.XP
2.3 40 CV.001 001 001.EP 003 003.EP 005 005.EP 007 007.EP 008 009 012 014 015 016 017.MI 017.MI.SA 018 019 020 022 022.EP 023 023.EP 024 024.EP 025 025.EP 027 027.EP 030 030.EP 033 035 036 039 041 042 043 045 046 047 048 501.XP
2.4 31 001 003 005 006 007 008 009 012 015 016 018 019.MI 019.MI.SA 021 024.MI 024.MI.SA 025 027 027.EP 028 030 037 038 038.EP 039 042 045 046 048 049 051
2.5 15 001 003 004 006 007 009 010 012 015 015.EP 018 020 022 024 027
Chapter 3: Matrices
3.1 31 CV.001 CV.002 001 003 004.MI 004.MI.SA 005 006 009.MI 009.MI.SA 012 015 019 021 022 023 024 027 029 030 031 031.EP 032 033 036 036.EP 037 039 041 501.XP 502.XP 503.XP
3.2 35 001 003 004 005 006 007 009.MI 009.MI.SA 010 012 013 013.EP 014 015 015.EP 019 021 022 023 024 026 027 028 029 032 033 034 036 037 037.EP 038 039 041 042 044 046 047 501.XP 502.XP 503.XP
3.3 44 001 002 003 006 007.MI 007.MI.SA 009 011 012 012.EP 014 015 016 018 021 023 024 025 027.MI 027.MI.SA 029 031 033 034 036 038 039 041 042 043 045 047 048 049 051 052 054 057.MI 057.MI.SA 060 062 063 064 066 069 072 501.XP 502.XP
3.4 25 002 002.EP 003.MI 003.MI.SA 004 004.EP 006 006.EP 007 009 010 012 013 015.MI 015.MI.SA 018 019 021 023 024 026 027 029 031 033
3.5 47 CV.001 009 011 011.EP 012 012.EP 013 014 015 015.EP 016 016.EP 017 018.MI 018.MI.SA 019 020 021 022 024 027 028 029 030 031 033 034 035 035.EP 036 038.MI 038.MI.SA 041 042 044 045 045.EP 046 048 048.EP 050 051 053 054 055 058 059 060 062 064 065 501.XP
3.6 36 CV.001 CV.002 001 002 003 004 007 009 012 013 015 017 018 019 021.MI 021.MI.SA 022 023 024 027 030 031 032 034 036 037.MI 037.MI.SA 039 039.EP 042 044 045 047 048 049 051 052 053 054
3.7 44 001 003 003.EP 004.MI 004.MI.SA 006 006.EP 008 009.MI 009.MI.SA 010 012 015 018 019 021 022 024 027 030 031 033 035 036 039 040 042 045 046 048 051 053 054 057 058 060 062 063 066 067 069 072 075 076 078
Chapter 4: Eigenvalues and Eigenvectors
4.1 22 CV.001 002 003 006 007 009 012 014 015 017.MI 017.MI.SA 018 021 024.MI 024.MI.SA 027 030 032 033 036 501.XP 502.XP
4.2 49 CV.001 CV.002 CV.003 Exp.012 001 003 006.MI 006.MI.SA 009 010 012 013 015 017 018 021 022 024 027 030 032 033 036 039 041 043 044 045.MI 045.MI.SA 046 046.EP 047 048 049 051 053 054 055 056 057 058 060 060.EP 062 063 065 066 069 070 501.XP 502.XP 503.XP
4.3 29 001 003 005 006.MI 006.MI.SA 007 009 012 013 014 015.MI 015.MI.SA 016 017 017.EP 018 019 020 021 022 023 024 026 027 028 030 031 032 035 036 037 501.XP
4.4 39 002 003 004 005 006 008 009 009.EP 011.MI 011.MI.SA 012 012.EP 014 015 016 018.MI 018.MI.SA 020 021 022 024 025 027 029 030 031 033 034 036 037 039.MI 039.MI.SA 040 042 043 044 045 047 049 050 052 501.XP 502.XP 503.XP 504.XP
4.5 32 002 002.EP 003 003.EP 004.MI 004.MI.SA 005 006 009 010 012 013 015 017 018 021 023 024 027 030.MI 030.MI.SA 032 033 034 036 039 040 042 043 045 046 047 051 052 053
4.6 51 003 004 006 008.MI 008.MI.SA 009 010 011 012 014 015 024 029 030 031 032 033 034 036 038 041 042 044 045 046 047 048 049 051 053 055 056 059.MI 059.MI.SA 060 063 064 065 066 068 069 071 072 073 075 077 078 079 081 084 086 087 090 091
Chapter 5: Orthogonality
5.1 30 001 003 003.EP 005 005.EP 006 006.EP 007 009 011 011.EP 012 012.EP 013 015 015.EP 016 017 018 020 021 022 023 024 025 026 029 030 031 033 036 501.XP
5.2 21 003 006.MI 006.MI.SA 007 009 012.MI 012.MI.SA 013 015 017 018 019 020 021 023 024 025 026 027 028 501.XP 502.XP 503.XP 504.XP
5.3 15 003 003.EP 005 006 007.MI 007.MI.SA 009 012.MI 012.MI.SA 015 017 018 020 021 023 024 501.XP
5.4 24 001.MI 001.MI.SA 003 003.EP 004 004.EP 005 005.EP 006 006.EP 009 012 014 015 016 017 018 018.EP 019 021 022 023.MI 023.MI.SA 024 025 027 028
5.5 41 001 003 004 006 007 009 012 013 014.MI 014.MI.SA 015 018 021 021.EP 022 023 024 024.EP 029 031 033 036 037 038 039 041 042 045 046 048 050 051 053 054 056 057 060 061 063 066 067 068 069 072 074
Chapter 6: Vector Spaces
6.1 47 CV.001 001 002 003 005 006 009 014 015 018 019 022 023 024 024.EP 025 025.EP 027 027.EP 029 030 030.EP 031 033 033.EP 034 034.EP 036 036.EP 037 039 039.EP 040 042 046 048 050 051 051.EP 052 053 054 055 056 057 059 060 062 064
6.2 42 001 003.MI 003.MI.SA 006 006.EP 007 009 009.EP 010 012 013 018 018.EP 019 019.EP 021 021.EP 022 024 024.EP 026 027 029 030 031 034 036 039 040 044 045 048 050 051 053 054 055 057 058 501.XP 502.XP 503.XP 504.XP 505.XP
6.3 17 CV.001 003 006.MI 006.MI.SA 009 012 014 015 015.EP 018.MI 018.MI.SA 021 022 501.XP 502.XP 503.XP 504.XP
6.4 24 002 003 004 006 009 012 014 015.MI 015.MI.SA 016 018 019 020 021 022 025 026 030 031 032 033 034 036 501.XP 502.XP 503.XP
6.5 25 002 003 006 008 009 010.MI 010.MI.SA 011 011.EP 012 015 015.EP 017 017.EP 018 018.EP 019 021 024 026 027 028 029 033 034 036 037 501.XP
6.6 28 001.MI 001.MI.SA 002 003 006 007 009 012 015 016 017 018 020 021 023 024.MI 024.MI.SA 025 027 028 030 031.MI 031.MI.SA 033 034 036 040 042 043 046
6.7 14 001 003 004 006.MI 006.MI.SA 008 009 012 013 015 017 018 020 021 022
Chapter 7: Distance and Approximation
7.1 29 001 002 003 005 006.MI 006.MI.SA 008 009 012 015 016 018 019 020 021 022 023 024 026.MI 026.MI.SA 027 028 029 030 031 032 036 037 039 041 042 043
7.2 33 001 002 003.MI 003.MI.SA 004 005 006 009 010 013 014 017 019 020 021.MI 021.MI.SA 022 023 024 026 027 029 030 031 033 034 035 036 037 039 040 042 043 045 047 048
7.3 36 001 003 006 007.MI 007.MI.SA 009 011 012 015 018 019.MI 019.MI.SA 021 021.EP 024 025 027 029 030 033 035 036 038 039 042 044 045 047 048 051 053 054 055 057 058 501.XP 502.XP 503.XP
7.4 42 001 003.MI 003.MI.SA 004 006 007 008 009 010 012.MI 012.MI.SA 013 013.EP 014 015 016 018 021 022 024 025 026 028 029 030 031 033 034 036 037 038 039 041 042 043 045 046 048 049 051 053 054 055 057 059 062 063
7.5 16 001 003 003.EP 004 005 006 009 010 012 015 017 020 021 022 023 025 026 027
Chapter 8: Codes (Online only)
8.1 12 001 003 003.EP 006 008 009 011 012 014 017 018 019 021
8.2 8 003 004 005 006 007 008 009 010 014
8.3 11 002 003 004 006 007 009 010 012 014 015 017 020
8.4 9 002 003 005 006 008 009 010 012 015 016
8.5 8 002 003 005 006 007 010 011 012 015 016
Total 1305 (91)