Calculus: Concepts and Contexts 5th edition

James Stewart and Stephen Kokoska
Publisher: Cengage Learning

eBook

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter DT: Diagnostic Tests
• DT.A: Algebra
• DT.B: Analytic Geometry
• DT.C: Functions
• DT.D: Trigonometry

• Chapter QP: Quick Prep Topics
• QP.1: Definition and Representations of Functions
• QP.2: Working with Representations of Functions
• QP.3: Function Notation
• QP.4: Domain and Range of a Function
• QP.5: Solving Linear Equations
• QP.6: Linear Functions
• QP.7: Parabolas
• QP.8: Factoring Quadratic Equations and Finding x-intercepts of a Quadratic Function
• QP.9: Polynomials
• QP.10: More about Factoring Polynomials
• QP.11: Finding Roots
• QP.12: Dividing Polynomials
• QP.13: Rational Functions
• QP.14: Root Functions
• QP.15: Rationalizing the Numerator or Denominator
• QP.16: Exponential Functions
• QP.17: Logarithmic Functions
• QP.18: Trigonometric Functions and the Unit Circle
• QP.19: Graphs of Trigonometric Functions
• QP.20: Trigonometric Identities
• QP.21: Special Functions
• QP.22: Algebraic Combinations of Functions
• QP.23: Composition of Functions
• QP.24: Transformations of Functions
• QP.25: Inverse Functions

• Chapter 1: Functions and Models
• 1.1: Four Ways to Represent a Function (62)
• 1.2: Mathematical Models: A Catalog of Essential Functions (33)
• 1.3: New Functions from Old Functions (53)
• 1.4: Exponential Functions (39)
• 1.5: Inverse Functions and Logarithms (58)
• 1.6: Parametric Curves (24)
• 1: Concepts and Vocabulary
• 1: True-False Quiz (11)
• 1: Review Exercises
• 1: Principles of Problem Solving
• 1: Extra Problems
• 1: Just-in-Time Questions

• Chapter 2: Limits and Derivatives
• 2.1: The Tangent and Velocity Problems (11)
• 2.2: The Limit of a Function (29)
• 2.3: Calculating Limits Using the Limit Laws (61)
• 2.4: Continuity (53)
• 2.5: Limits Involving Infinity (62)
• 2.6: Derivatives and Rates of Change (52)
• 2.7: The Derivative as a Function (60)
• 2: Concepts and Vocabulary
• 2: True-False Quiz (23)
• 2: Review Exercises
• 2: Principles of Problem Solving
• 2: Extra Problems
• 2: Just-in-Time Questions

• Chapter 3: Differentiation Rules
• 3.1: Derivatives of Polynomials and Exponential Functions (74)
• 3.2: The Product and Quotient Rules (60)
• 3.3: Derivatives of Trigonometric Functions (46)
• 3.4: The Chain Rule (92)
• 3.5: Implicit Differentiation (71)
• 3.6: Inverse Trigonometric Functions and Their Derivatives (21)
• 3.7: Derivatives of Logarithmic Functions (58)
• 3.8: Rates of Change in the Natural and Social Sciences (36)
• 3.9: Linear Approximations and Differentials (30)
• 3: Concepts and Vocabulary
• 3: True-False Quiz (15)
• 3: Review Exercises (13)
• 3: Principles of Problem Solving
• 3: Extra Problems
• 3: Just-in-Time Questions

• Chapter 4: Applications of Differentiation
• 4.1: Related Rates (54)
• 4.2: Maximum and Minimum Values (76)
• 4.3: Derivatives and the Shapes of Curves (79)
• 4.4: Graphing with Calculus and Calculators (14)
• 4.5: Indeterminate Forms and l'Hospital's Rule (70)
• 4.6: Optimization Problems (82)
• 4.7: Newton's Method (41)
• 4.8: Antiderivatives (74)
• 4: Concepts and Vocabulary
• 4: True-False Quiz (21)
• 4: Review Exercises (1)
• 4: Principles of Problem Solving
• 4: Extra Problems
• 4: Just-in-Time Questions

• Chapter 5: Integrals
• 5.1: Areas and Distances (28)
• 5.2: The Definite Integral (73)
• 5.3: Evaluating Definite Integrals (66)
• 5.4: The Fundamental Theorem of Calculus (28)
• 5.5: The Substitution Rule (94)
• 5.6: Integration by Parts (51)
• 5.7: Additional Techniques of Integration (39)
• 5.8: Integration Using Tables and Computer Algebra Systems (33)
• 5.9: Approximate Integration (34)
• 5.10: Improper Integrals (53)
• 5: Concepts and Vocabulary
• 5: True-False Quiz (27)
• 5: Review Exercises (2)
• 5: Principles of Problem Solving
• 5: Extra Problems
• 5: Just-in-Time Questions

• Chapter 6: Applications of Integration
• 6.2: Volumes
• 6.3: Volumes by Cylindrical Shells
• 6.4: Arc Length
• 6.5: Average Value of a Function
• 6.6: Applications to Physics and Engineering
• 6.7: Applications to Economics and Biology
• 6.8: Probability
• 6: Concepts and Vocabulary
• 6: True-False Quiz
• 6: Review Exercises
• 6: Principles of Problem Solving
• 6: Extra Problems
• 6: Just-in-Time Questions

• Chapter 7: Differential Equations
• 7.1: Modeling with Differential Equations
• 7.2: Slope Fields and Euler's Method
• 7.3: Separable Equations
• 7.4: Exponential Growth and Decay
• 7.5: The Logistic Equation
• 7.6: Predator-Prey Systems
• 7: Concepts and Vocabulary
• 7: True-False Quiz
• 7: Review Exercises
• 7: Principles of Problem Solving
• 7: Extra Problems
• 7: Just-in-Time Questions

• Chapter 8: Infinite Sequences and Series
• 8.1: Sequences
• 8.2: Series
• 8.3: The Integral and Comparison Tests; Estimating Sums
• 8.4: Other Convergence Tests
• 8.5: Power Series
• 8.6: Representations of Functions as Power Series
• 8.7: Taylor and Maclaurin Series
• 8.8: Applications of Taylor Polynomials
• 8: Concepts and Vocabulary
• 8: True-False Quiz
• 8: Review Exercises
• 8: Principles of Problem Solving
• 8: Extra Problems
• 8: Just-in-Time Questions

• Chapter 9: Vectors and the Geometry of Space
• 9.1: Three-Dimensional Coordinate Systems
• 9.2: Vectors
• 9.3: The Dot Product
• 9.4: The Cross Product
• 9.5: Equations of Lines and Planes
• 9.6: Functions and Surfaces
• 9.7: Cylindrical and Spherical Coordinates
• 9: Concepts and Vocabulary
• 9: True-False Quiz
• 9: Review Exercises
• 9: Principles of Problem Solving
• 9: Extra Problems
• 9: Just-in-Time Questions

• Chapter 10: Vector Functions
• 10.1: Vector Functions and Space Curves
• 10.2: Derivatives and Integrals of Vector Functions
• 10.3: Arc Length and Curvature
• 10.4: Motion in Space: Velocity and Acceleration
• 10.5: Parametric Surfaces
• 10: Concepts and Vocabulary
• 10: True-False Quiz
• 10: Review Exercises
• 10: Principles of Problem Solving
• 10: Extra Problems
• 10: Just-in-Time Questions

• Chapter 11: Partial Derivatives
• 11.1: Functions of Several Variables
• 11.2: Limits and Continuity
• 11.3: Partial Derivatives
• 11.4: Tangent Planes and Linear Approximations
• 11.5: The Chain Rule
• 11.6: Directional Derivatives and the Gradient Vector
• 11.7: Maximum and Minimum Values
• 11.8: Lagrange Multipliers
• 11: Concepts and Vocabulary
• 11: True-False Quiz
• 11: Review Exercises
• 11: Principles of Problem Solving
• 11: Extra Problems
• 11: Just-in-Time Questions

• Chapter 12: Multiple Integrals
• 12.1: Double Integrals over Rectangles
• 12.2: Iterated Integrals
• 12.3: Double Integrals over General Regions
• 12.4: Double Integrals in Polar Coordinates
• 12.5: Applications of Double Integrals
• 12.6: Surface Area
• 12.7: Triple Integrals
• 12.8: Triple Integrals in Cylindrical and Spherical Coordinates
• 12.9: Change of Variables in Multiple Integrals
• 12: Concepts and Vocabulary
• 12: True-False Quiz
• 12: Review Exercises
• 12: Principles of Problem Solving
• 12: Extra Problems
• 12: Just-in-Time Questions

• Chapter 13: Vector Calculus
• 13.1: Vector Fields
• 13.2: Line Integrals
• 13.3: The Fundamental Theorem for Line Integrals
• 13.4: Green's Theorem
• 13.5: Curl and Divergence
• 13.6: Surface Integrals
• 13.7: Stokes' Theorem
• 13.8: The Divergence Theorem
• 13.9: Summary
• 13: Concepts and Vocabulary
• 13: True-False Quiz
• 13: Review Exercises
• 13: Principles of Problem Solving
• 13: Extra Problems
• 13: Just-in-Time Questions

• Chapter A: Appendixes
• A.A: Intervals, Inequalities, and Absolute Values
• A.B: Coordinate Geometry
• A.C: Trigonometry
• A.D: Precise Definitions of Limits
• A.E: A Few Proofs
• A.F: Sigma Notation
• A.G: Integration of Rational Functions by Partial Fractions
• A.H: Polar Coordinates
• A.I: Complex Numbers

Present an intuitive, discovery based, problem-solving approach for learning calculus to your students with Stewart/Kokoska's Calculous: Concepts and Contexts, 5th Edition, and WebAssign digital resources. Updated and refined using the latest learning design principles, this edition removes barriers to learning to offer a carefully planned, inclusive experience for all students. The authors balance theory and conceptual work for more progressive programs yet retain traditional topics to meet the needs of more conventional calculus curriculums. Revised content focuses on major concepts and the Rule of Four with precise definitions and new margin notes, thorough step-by-step explanations and detailed examples with expanded solutions. This edition offers even more exercises and new learning features that closely examine key concepts. New automatically-graded online Proof Problems, Expanded Problems and Explore It interactive learning modules in WebAssign further strengthen conceptual understanding.

WebAssign Features
• Read It links under each question quickly jump to the corresponding section of a complete, interactive eBook that lets students highlight and take notes as they read.
• Course Packs with ready-to-use assignments were built by subject matter experts specifically for this textbook to save you time, and can be easily customized to meet your teaching goals.
• Watch It links provide step-by-step instruction with short, engaging videos that are ideal for visual learners.
• All questions contain detailed solutions to the problem, available to students at your discretion.
• Select questions contain student feedback designed to help guide them to the correct answer.
• Instructor and student resources include Lecture Videos and PowerPoint Slides.
WebAssign Question Types
• Explore It (EI) modules help students visualize the course's complex topics through hands-on exploration and interactive simulation.
• Master It Tutorials (MI) show how to solve a similar problem in multiple steps by providing direction along with derivation so students understand the concepts and reasoning behind the problem solving.
• Video Examples (VE) ask students to watch a section level video segment and then answer a question related to that video. Consider assigning the video example as review prior to class or as a lesson review prior to a quiz or test.
• Just In Time (JIT) problems are ideal for students who need to remediate their algebra and trigonometry skills. They are carefully selected prerequisite review problems tied to specific calculus problems and assignable at the section level.
• QuickPrep (QP) questions review the concepts of linear functions to help improve student readiness for calculus. Assign any of these QuickPrep modules early in the course or whenever the review is most needed.
• Active Examples (AE) guide students through the process needed to master a concept.
Use the Textbook Edition Upgrade Tool to automatically update all of your assignments from the previous edition to corresponding questions in this textbook.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter QP: Quick Prep Topics
QP.12 003
Chapter 1: Functions and Models
1.PS 5 001 013 015 017 019
1.TF 11 001 002 003 004 005 006 007 008 009 010 011
1.1 62 001 002 003 004 005.MI 005.MI.SA 006 007 008.MI 008.MI.SA 009 010 011 012 013 014 016 017 018 020 024 026 028 029 030 031 032 036 037 038 039 040 043 044 045 047 048 049 050 052 054 055 056 057 058 059 060 061 062 063 065 067 068 069 070 071 072 073 074 075 076 077
1.2 33 001 003 004 005 007 009 011 013 015 023 025 027 031 033 034 035.MI 035.MI.SA 039 040.MI 040.MI.SA 044 045 046 047 048 049 050 052 053 054 056 060 061
1.3 53 001 002 003 005 006.MI 006.MI.SA 007 015 016 017 020 021 025 027 031 031.EP 032 033 033.EP 034 037 038 039 043 044 045 047.MI 047.MI.SA 048 049 051 052 053 054 055 056 057 059 060 061 062 063.MI 063.MI.SA 064 065 066 067 068 069 070 071 072 073
1.4 39 001 003 004 006 008 009 010 011 013 015 017 018 019 023 024 025 025.EP 026 027.MI 027.MI.SA 029 030 032 034 035 036 040 041.MI 041.MI.SA 042 043 044 045 047 048.MI 048.MI.SA 049 052 054
1.5 58 001 003 004 005 006 007 008 009 010 011 013 014 015 016 017 018 019 019.EP 020 021 023 025 026 027 028 029 030 031 033 035 037 038 040 041 043 046 049 051 052 052.EP 053 057 058 059 060 063 064 065 066 068 070 072 073 074 076 080.MI 080.MI.SA 081
1.6 24 006 007 009 010 011 013 014 015 017 020 021 022 023 025 026 029 030 031 038 039 041 042 043 045
Chapter 2: Limits and Derivatives
2.PS 6 001 003 005 013 015 017
2.TF 23 001 002 003 004 005 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 026 027 029
2.1 11 003 004.MI 004.MI.SA 005 006 009 010.MI 010.MI.SA 011 012 014
2.2 29 001 002 003 004 005 006 007.MI 007.MI.SA 008 010 013 014 016 018 020 023 025 026 027 028 029 030 031 033 034 036 039 040 045
2.3 61 001 002 003 005 006 007 008 009 010 012 016 017.MI 017.MI.SA 018 020 021.MI 021.MI.SA 022 023 024 026 027 028 029 030 031 032 033 035 036 037 038 039 041.MI 041.MI.SA 042 043 045 046.MI 046.MI.SA 047 048 049 050 051 052 053 054 055 056 057 058 059 062 063 065 066 068 070 071 072
2.4 53 001 002 003.MI 003.MI.SA 004 004.EP 005 007 010 011 012 014 016 018 019 020 021 022 023 025 031 034 035 036.MI 036.MI.SA 037 038 039 040 042 042.EP 043 043.EP 044 045 046.MI 046.MI.SA 047 048 050.MI 050.MI.SA 051 052 054 055 057 059 065 069 070 071 072 075
2.5 62 002 003 004 005 007 009 010 011 012 013 016.MI 016.MI.SA 019 023 024 025 027 029 031 033 034 035 037 039 040 041 043.MI 043.MI.SA 044 046 047 048 049 050 052 053 054 055 056 057.MI 057.MI.SA 058 059 060 061 061.EP 064 065 065.EP 066 067 068 069 070 071 072 073 076 077 078 079 080
2.6 52 001 004 005 007 008.MI 008.MI.SA 010 011 012 013 014.MI 014.MI.SA 015.MI 015.MI.SA 016.MI 016.MI.SA 017 019 020 022 026 026.EP 027 028 030 032 032.EP 034 035 036.MI 036.MI.SA 038.MI 038.MI.SA 040 044 045 046 048 049 052 053 055 057 058 060 062 063 065 068 069 070 071
2.7 60 001 003.MI 003.MI.SA 004 005 006 007 008 009 010 011 013 014 015 016 021 023 024 025 027 028 029 030 032 033 034 036 039 040 041 042 043 045 046 047 048 051 051.EP 052 053 054 055 056 057 058 059 060 064 066.MI 066.MI.SA 067 068 069 070 071 072 073 074 076 076.EP
Chapter 3: Differentiation Rules
3.PP 001
3.PS 7 001 004 005 006 007 011 021
3.R 13 086 088 090 091 092 093 094 095 096 097 098 100 101
3.TF 15 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015
3.1 74 001 003 004 005 006 009 011 012 013 015 016 019.MI 019.MI.SA 020 022 023.MI 023.MI.SA 024 025 027 028 029 031 032.MI 032.MI.SA 033 034 034.EP 035 037.EP 037.MI 037.MI.SA 038 039 039.EP 040.MI 040.MI.SA 041 042 047 048 049 050 051 052 053 054 055 056 058 060 060.EP 062 064 065 066 068 069 070 072 073 078 079 081 082 083 084 085 086 089 090 091 092 093
3.2 60 001 002 003 004 006 007 008 010 012.MI 012.MI.SA 013 015 016 017 018 019 021 022 024 025 026 027 028 029 031 032 033 033.EP 034 036 037 038 040 041 044 046 047 048 049 050 051 052 053 054.MI 054.MI.SA 055 056 057 058 059 060 062 063 064 067 068 069 070 072 074
3.3 46 001 002 004 005 006 007 008 009.MI 009.MI.SA 011 013 013.EP 015 016 017 018 019 022 023 024 027 028 028.EP 030 031 032 034 035 037 038 039 040 041 042.MI 042.MI.SA 043 044 045 046 047 048 050 051 054 055 056
3.4 92 JIT.001.MI 001 003 005 007 009 010 011 012 013 014.MI 014.MI.SA 015 016 017 019 021.MI 021.MI.SA 023 024 025 026 027 028 030 031 033 034 035 037 039 040 041 042 044 045 046 047 048 050 051 052 052.EP 053 054 055 055.EP 056 057 059 061 061.EP 062 063 064 065 068 069 070 071 072 073 074 076 077 078 081 082 083 084 085 086 087 088 089 090 091 093 094 095 096 097.MI 097.MI.SA 098 099 100 103 105 106 108 109 114 117
3.5 71 001 003 004 005 006 007 008.MI 008.MI.SA 009 010 011 012 013 014.MI 014.MI.SA 015 016 018 020 021 022 023 026 027 028 029 030 031 033 034 034.EP 035.MI 035.MI.SA 036 036.EP 038 039 040 041 042 044 045 046 047 048 048.EP 049 049.EP 050 050.EP 051 051.EP 052 052.EP 053 053.EP 055 056 057 058 059 061 064 065 068 069 071 073 074 075 076
3.6 21 001.MI 001.MI.SA 002 003 009 010 011 012 013 014 015 017 019.MI 019.MI.SA 020 021 023 025 027 028 039
3.7 58 002 004.MI 004.MI.SA 005 006 007 010 012 013 014 016 017 018 020 021 022 023 026 028 029 030 031 032 033.MI 033.MI.SA 034 035 036 037 038 039 040 041 042 044 045 046 047 048.MI 048.MI.SA 050 051 052 053 054 055 056 057 059 060 061 062 063 064 065 066 067 068
3.8 36 001 003 005 006 007 007.EP 008.MI 008.MI.SA 009 010 011 012 013 014 015 016 017 018.MI 018.MI.SA 019 020 022 022.EP 023 025 026 027 029 030 031 032 033 035 036 037 039
3.9 30 001.MI 001.MI.SA 002 003 005 006.MI 006.MI.SA 007 008 009 010 011 012 013 014 015 017 018 019.MI 019.MI.SA 020 024 026 031 032 033 034 035 036 037 039 040
Chapter 4: Applications of Differentiation
4.PS 6 002 007 009 013 017 025
4.R 1 011
4.TF 21 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021
4.1 54 002 003 004.MI 004.MI.SA 005.MI 005.MI.SA 006 006.EP 007 010 011 012 013 014 015 016 017 018 019 020.MI 020.MI.SA 021.MI 021.MI.SA 022 027 028 029.MI 029.MI.SA 030 032 032.EP 033.MI 033.MI.SA 034 035 036 037 039 040 044.MI 044.MI.SA 045 046 047 048 049 050 051 052 053 054 055 056 057
4.2 76 001 003 004 005 006 007 008 010 011 013 015 017 019 020 021 022 023 024 025 026 027 028 029 030 032 033.MI 033.MI.SA 034 034.EP 035.MI 035.MI.SA 036 037 037.EP 038 039 041 042 043 044 045 045.EP 046 047.MI 047.MI.SA 048 049 050 051 052 053 053.EP 055 055.EP 056 057 060 061 062 063 064 065 066 067 068 069 071 072 073 074 075 076 076.EP 077 079 081
4.3 79 005 008 009 010 012 014 015 016 017 019 019.EP 020 021 023 024.MI 024.MI.SA 025 026 027 028 029 030 031 032 033 034 036 037.MI 037.MI.SA 038 039 040 041 042 043 044 045 048 049 050 051 052 053 054.MI 054.MI.SA 055 056 057 058 059 060 061 062 064 065 066 068 069.MI 069.MI.SA 071 072.MI 072.MI.SA 077 078 079 080 081 083 084 086 090 091 093.MI 093.MI.SA 094 097 099 100 103
4.4 14 001 010.MI 010.MI.SA 011.MI 011.MI.SA 012 013 016 017 018 019 020 029 031
4.5 70 001 002 003 004 005 006 007 008 009 010 013 014 015.MI 015.MI.SA 016 017 018 020.MI 020.MI.SA 021 022 024 025 026 027 028 029 030 031.MI 031.MI.SA 032 034 036 038 039 040.MI 040.MI.SA 042 043 044 046 048 050 051 052 054 055 057 058.MI 058.MI.SA 059 061 062 064 066 067 068 069 076 077 078 079 083 084 086 088 092 093 094 095
4.6 82 001 002.MI 002.MI.SA 003 005.MI 005.MI.SA 006 007 008 009 010.MI 010.MI.SA 011 012 013 014 015 015.EP 017 018.MI 018.MI.SA 019 019.EP 021 023 024 026.MI 026.MI.SA 028 029 030 031 032 035 036 038 040 041.MI 041.MI.SA 042 043 044 045 046 047 048 049 051 052 054 055 056.MI 056.MI.SA 057 058 059.MI 059.MI.SA 060 061 062.MI 062.MI.SA 063 064 065 067 068 069 070 071 072 075 076 077 079 080 081 082 083 084 085 087 089
4.7 41 001 003 004 006.MI 006.MI.SA 007 008.MI 008.MI.SA 009 010 011.MI 011.MI.SA 012 013.MI 013.MI.SA 014 015.MI 015.MI.SA 016 017 018 031 032 033 034 035 036.MI 036.MI.SA 037 038 041 042 045 046.MI 046.MI.SA 047 048 049.MI 049.MI.SA 050 052
4.8 74 001 002 003 004 005.MI 005.MI.SA 006 007 009 011 012 013 015 016 018 021 023 024 025 027 029 030 030.EP 031 033 034 036 037 038 040 041 042.MI 042.MI.SA 043 044 044.EP 046 047 049 050 051 052 053 054 055 056 057 058 061 063 064 065 066 067 068 069 069.EP 070 071 073 074.MI 074.MI.SA 075 076.MI 076.MI.SA 077 077.EP 078 079 080 081 082 083 084
Chapter 5: Integrals
5.PS 6 002 005 007 011 015 017
5.R 2 084 085
5.TF 27 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027
5.1 28 001 002 003 004 006 009 012 013 014 015.MI 015.MI.SA 016 017.MI 017.MI.SA 019 020 021 023 024 025 026 027 028 029 033 034 035 036
5.2 73 001.MI 001.MI.SA 002.MI 002.MI.SA 003.MI 003.MI.SA 004 005 006 007 008 009.MI 009.MI.SA 010 011 012 013 014 019 021.MI 021.MI.SA 022 023 024 025 026 028 029 030 032 034 037 037.EP 038 043 044.MI 044.MI.SA 045 046 049 050 051 053 055 056 057 058 059.MI 059.MI.SA 060 061.MI 061.MI.SA 062.MI 062.MI.SA 063 064 065 066 068 069 070 071 072 073 075 076 077 078 079 080 081 082 083
5.3 66 001 002 005 006 008 009 010 011.MI 011.MI.SA 013 014 016 017 018.MI 018.MI.SA 021 023.MI 023.MI.SA 025 026 027 028 031 032 040 042 044 045 046 047 048 050 051 053 054 055 057 060 061 062 063 065 070 072 073 074 075 076.MI 076.MI.SA 077 078 079 079.EP 080 081 081.EP 082 083 085 085.EP 086 089 090 092 093 094
5.4 28 002 003 005 007 008 009 010 012 014.MI 014.MI.SA 015.MI 015.MI.SA 016 017 018 019 020 021 022 023 026 027 028 030 032 033 037 038
5.5 94 001 001.EP 002.MI 002.MI.SA 003 004.MI 004.MI.SA 005 006 007.MI 007.MI.SA 010 012 013 015 016.MI 016.MI.SA 017.MI 017.MI.SA 018 019 020 020.EP 022 024.MI 024.MI.SA 025 026 027 028.MI 028.MI.SA 029 030.MI 030.MI.SA 031.MI 031.MI.SA 033 034 035 036 038 039.MI 039.MI.SA 040 041 043 044 045 046 046.EP 047 049.MI 049.MI.SA 050 051 052 053 055 056 058 059 060 060.EP 062.MI 062.MI.SA 064 065 066 066.EP 068 069 070 071 072 074 075 076 077 078 080 084 087 088 089 090 091 091.EP 092 093 095 096 099 100 101
5.6 51 001 001.EP 003 005 006 007 009 010 011 014 016.MI 016.MI.SA 017 018 019 020 021 022 023 024 026 026.EP 027 028 030 030.EP 032 033 034 035 036 039 040 043 043.EP 044 045 046 047 048 049 050 053 055 056 057 058 059 061 062 063
5.7 39 001.MI 001.MI.SA 002.MI 002.MI.SA 003 006 007 008 009 012 017.MI 017.MI.SA 018 021 022 023 024 025 026 027 028 029 030.MI 030.MI.SA 032 033 034 035 036 037.MI 037.MI.SA 038 039 040 042 043 044 045 046
5.8 33 001.MI 001.MI.SA 002.MI 003 004 005 006.MI 006.MI.SA 007 008 009 010 011 012.MI 012.MI.SA 013 014 014.EP 016 017.MI 017.MI.SA 018 019 020 021 022 023 024 025 028 030 031 033
5.9 34 001 002 003 004 007.MI 007.MI.SA 008 009 010 011 012 013 014 015 016 017 018 019 020.MI 020.MI.SA 023 024 025 026 028.MI 028.MI.SA 029 031 033 034 035 038 039 041
5.10 53 001 003 004 005 006 009 011 013 016 017 018 018.EP 019 020 022 023 024 025 027 027.EP 029 032 033 035 036 036.EP 037 039 043 044 047 049 051 055 057 058 059 060 061 061.EP 063 064.MI 064.MI.SA 065 066 069 070 071 072 074 075 079 080
Chapter 6: Applications of Integration
6.1 EI.001
Chapter 7: Differential Equations
7 0
Chapter 8: Infinite Sequences and Series
8 0
Chapter 9: Vectors and the Geometry of Space
9 0
Chapter 10: Vector Functions
10 0
Chapter 11: Partial Derivatives
11 0
Chapter 12: Multiple Integrals
12 0
Chapter 13: Vector Calculus
13 0
Total 2217 (6)