# Early Vectors 1st edition

James Stewart
Publisher: Cengage Learning

## Cengage Unlimited

Included in a Cengage Unlimited subscription. Learn More

## eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

## Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

Access is contingent on use of this textbook in the instructor's classroom.

Academic Term Homework Homework and eBook
Higher Education Single Term \$60.00 \$100.00
Higher Education Multi-Term \$80.00 \$125.00
High School \$21.50 \$50.00

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

• Chapter 0: Review and Preview
• 0.1: Functions and Their Graphs (53)
• 0.2: Types of Functions; Shifting and Scaling (6)
• 0.3: Graphing Calculators and Computers (12)
• 0.4: Principles of Problem Solving
• 0.5: A Preview of Calculus
• 0: True/False Quiz

• Chapter 1: Introduction to Vectors and Vector Functions
• 1.1: Vectors (16)
• 1.2: The Dot Product (17)
• 1.3: Vector Functions (11)
• 1: True/False Quiz

• Chapter 2: Limits and Rates of Change
• 2.1: The Tangent and Velocity Problems (10)
• 2.2: The Limit of a Function (24)
• 2.3: Calculating Limits Using the Limit Laws (34)
• 2.4: The Precise Definition of a Limit (11)
• 2.5: Continuity (17)
• 2.6: Limits at Infinity; Horizontal Asymptotes (21)
• 2.7: Tangents, Velocities, and Other Rates of Change (18)
• 2: True/False Quiz (9)

• Chapter 3: Derivatives
• 3.1: Derivatives (36)
• 3.2: Differentiation Formulas (37)
• 3.3: Rates of Change in the Natural and Social Sciences (20)
• 3.4: Derivatives of Trigonometric Functions (10)
• 3.5: The Chain Rule (20)
• 3.6: Implicit Differentiation (15)
• 3.7: Derivatives of Vector Functions (5)
• 3.8: Higher Derivatives (5)
• 3.9: Slopes and Tangents of Parametric Curves (7)
• 3.10: Related Rates (32)
• 3.11: Differentials; Linear and Quadratic Approximations (18)
• 3.12: Newton's Method (12)
• 3: True/False Quiz (8)

• Chapter 4: Inverse Functions: Exponential, Logarithmic, and Inverse Trigonometric Functions
• 4.1: Exponential Functions and Their Derivatives (10)
• 4.2: Inverse Functions (7)
• 4.3: Logarithmic Functions (9)
• 4.4: Derivatives of Logarithmic Functions (22)
• 4.5: Exponential Growth and Decay (16)
• 4.6: Inverse Trigonometric Functions (4)
• 4.7: Hyperbolic Functions (26)
• 4.8: Indeterminate Forms and L'Hospital's Rule (34)
• 4: True/False Quiz (4)

• Chapter 5: Applications of Differentiation
• 5.1: What does f' Say About f'? (5)
• 5.2: Maximum and Minimum Values (26)
• 5.3: Derivatives and the Shapes of Curves (29)
• 5.4: Graphing with Calculus and Calculators (4)
• 5.5: Applied Maximum and Minimum Problems (48)
• 5.6: Applications to Economics (6)
• 5.7: Antiderivatives (27)
• 5: True/False Quiz (13)

• Chapter 6: Integrals
• 6.1: Sigma Notation (49)
• 6.2: Area (3)
• 6.3: The Definite Integral (23)
• 6.4: The Fundamental theorem of Calculus (62)
• 6.5: The Substitution Rule (43)
• 6.6: The Logarithm Defines as an Integral (11)
• 6: True/False Quiz (9)

• Chapter 7: Applications of Integration
• 7.1: Areas Between Curves (30)
• 7.2: Volume (42)
• 7.3: Volumes by Cylindrical Shells (29)
• 7.4: Work (25)
• 7.5: Average Value of a Function (15)
• 7: True/False Quiz

• Chapter 8: Techniques of Integration
• 8.1: Integration by Parts (26)
• 8.2: Trigonometric Integrals (32)
• 8.3: Trigonometric Substitution (18)
• 8.4: Integration of Rational Functions by Partial Fractions (23)
• 8.5: Rationalizing Substitutions (5)
• 8.6: Strategy for Integration (19)
• 8.7: Using Tables of Integrals and Computer Algebra Systems (22)
• 8.8: Approximate Integration (12)
• 8.9: Improper Integrals (33)
• 8: True/False Quiz (8)

• Chapter 9: Further Applications of Integration
• 9.1: Differential Equations (11)
• 9.2: First-Order Linear Equations (14)
• 9.3: Arc Length (8)
• 9.4: Area of a Surface of Revolution (12)
• 9.5: Moments and Centers of Mass (8)
• 9.6: Hydrostatic Pressure and Force (8)
• 9.7: Applications to Economics and Biology (9)
• 9: True/False Quiz

• Chapter 10: Infinite Sequences and Series
• 10.1: Sequences (9)
• 10.2: Series (23)
• 10.3: The Integral Test and Comparison Tests; Estimating Sums (22)
• 10.4: Other Convergence Tests (19)
• 10.5: Power Series (12)
• 10.6: Representation of Functions as Power Series (16)
• 10.7: Taylor and Maclaurin Series (18)
• 10.8: The Binomial Series (3)
• 10.9: Applications of Taylor Polynomials (12)
• 10: True/False Quiz (16)

• Chapter 11: Three-Dimensional Analytic Geometry and Vectors
• 11.1: Three-Dimensional Coordinate Systems (14)
• 11.2: Vectors and the Dot Product in Three Dimensions (23)
• 11.3: The Cross Product (18)
• 11.4: Equations of Lines and Planes (22)
• 11.5: Quadric Surfaces (14)
• 11.6: Vector Functions and Space Curves (14)
• 11.7: Arc Length and Curvature (15)
• 11.8: Motion in Space: Velocity and Acceleration (10)
• 11: True/False Quiz (14)

• Chapter 12: Partial Derivatives
• 12.1: Functions of Several Variables (11)
• 12.2: Limits and Continuity (13)
• 12.3: Partial Derivatives (23)
• 12.4: Tangent Planes and Differentials (17)
• 12.5: The Chain Rule (14)
• 12.6: Directional Derivatives and the Gradient Vector (14)
• 12.7: Maximum and Minimum Values (29)
• 12.8: Lagrange Multipliers (28)
• 12: True/False Quiz (10)

• Chapter 13: Multiple Integrals
• 13.1: Double Integrals over Rectangles (3)
• 13.2: Iterated Integrals (13)
• 13.3: Double Integrals over General Regions (17)
• 13.4: Polar Coordinates (18)
• 13.5: Double Integrals in Polar Coordinates (14)
• 13.6: Applications of Double Integrals (11)
• 13.7: Surface Area (2)
• 13.8: Triple Integrals (21)
• 13.9: Cylindrical and Spherical Coordinates (6)
• 13.10: Triple Integrals in Cylindrical and Spherical Coordinates (18)
• 13.11: Change of Variables in Multiple Integrals (11)
• 13: True/False Quiz (6)

• Chapter 14: Vector Calculus
• 14.1: Vector Fields (5)
• 14.2: Line Integrals (23)
• 14.3: The Fundamental Theorem for Line Integrals (14)
• 14.4: Green's Theorem (10)
• 14.5: Curl and Divergence (8)
• 14.6: Parametric Surfaces and Their Areas (24)
• 14.7: Surface Integrals (15)
• 14.8: Stokes' Theorem (7)
• 14.9: The Divergence Theorem (10)
• 14.10: Summary
• 14: True/False Quiz (8)

• Chapter 15: Second-Order Differential Equations
• 15.1: Second-Order Linear Equations (16)
• 15.2: Nonhomogeneous Linear Equations (10)
• 15.3: Applications of Second-Order Differential Equations (13)
• 15.4: using Series to Solve Differential Equations (8)
• 15: True/False Quiz (4)

• Chapter A: Appendix
• A.A: Numbers, Inequalities, and Absolute Values (68)
• A.B: Coordinate Geometry and Lines (61)
• A.C: Graphs of Second-Degree Equations (40)
• A.D: Trigonometry (82)
• A.E: Mathematical Induction
• A.F: Proofs of Theorems
• A.G: Lies My Calculator and Computer Told Me
• A.H: Complex Numbers (46)
• A.I: Conic Sections (28)
• A.J: Conic Sections in Polar Coordinates (17)
• A.K: Table of Integrals
• A.L: Answers to Odd Numbered Exercises

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
AE - Active Example
TF - True / False Quiz
Tut - Tutorial Question
XP - Extra Problem

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 0: Review and Preview
0.1 53 AE.05 AE.07 AE.16 AE.19 Tut.05 Tut.07 Tut.11 Tut.12 001 015 016 019 020 021 024 025 027.MI 027.MI.SA 029 031 035 039 043 044 047 049 055 056 057 058 061 062 063 064 065 066 067 081 082 083 084 087 090 092 095 096.MI 096.MI.SA 097 101 104 105 106.MI 106.MI.SA
0.2 6 AE.02 AE.05 Tut.01 Tut.05 001 002
0.3 12 AE.04 AE.05 AE.08 001 002 027 028 029 031 032 035 036
Chapter A: Appendix
A.A 68 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 027 028 029 031 032 033 034 035 036 037 038 039 040 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 069 070 071 072 073 074 075 077 078 079 080 081 082
A.B 61 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 055 056 057 058 059 060 061 062
A.C 40 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040
A.D 82 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 084 088 089
A.H 46 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 044 045 047 048 049
A.I 28 AE.02 AE.03 AE.07 Tut.02 Tut.03 Tut.07 002 009 010 011 012 013 014 015 016 017 020 022 027 028 031 032 033 034 037 040 041 044
A.J 17 AE.01 AE.02 AE.04 Tut.01 Tut.02 Tut.04 005 007 009 010 011 012 013 014 015 027 028
Chapter 1: Introduction to Vectors and Vector Functions
1.1 16 001 002 003.MI 003.MI.SA 004 005 006 009 013 018 020 025 027 028 029 030
1.2 17 AE.03 002 003 004 005.MI 005.MI.SA 014 019 028 033 034 043 050 054 055 056 057
1.3 11 AE.05 AE.10 001 002 004 005 007 015 026 032 036
Chapter 2: Limits and Rates of Change
2.TF 9 001 002 003 004 008 009 010 011 012
2.1 10 AE.01 AE.03 Tut.01 Tut.03 007 008 009 010.MI 010.MI.SA 012
2.2 24 AE.03 AE.04 AE.06 AE.07 Tut.03 Tut.04 Tut.06 Tut.07 001 002 003 005 006.MI 006.MI.SA 009 010 017 018.MI 018.MI.SA 022 023 024 025 028
2.3 34 AE.07 AE.10 AE.13 Tut.05 Tut.08 Tut.11 002 007 008 009 013 015 016 021 022 024.MI 024.MI.SA 026 027 033 034 036 048 054.MI 054.MI.SA 056 063 064 065 066 071 075 078 081
2.4 11 AE.02 AE.03 AE.05 Tut.02 Tut.03 Tut.05 003 004 007 010 035
2.5 17 AE.02 AE.10 Tut.02 Tut.09 Tut.10 001.MI 001.MI.SA 002 031 037.MI 037.MI.SA 040 055 056 057 501.XP 502.XP
2.6 21 AE.02 AE.09 Tut.03 Tut.06 Tut.11 010 011 012 014 016 019 020 025 031 033 034.MI 034.MI.SA 035 043 046 052
2.7 18 AE.01 AE.05 Tut01 001 002 003 004.MI 004.MI.SA 006 009 010 011.MI 011.MI.SA 012 014 016 019 501.XP
Chapter 3: Derivatives
3.TF 8 002 003 004 005 006 007 009 011
3.1 36 AE.01 AE.02 AE.05 AE.08 Tut.03 Tut01 Tut02 Tut03 Tut04 Tut05 001 002 004 005 007 011 012 013 014 016 017 018 023 025 027 028 032 033 034.MI 034.MI.SA 043 049.MI 049.MI.SA 050 059 060
3.2 37 AE.05 Tut.04 Tut.06 Tut.08 001 003 005 010 014 015.MI 015.MI.SA 021 024 031 032 033 036 040 041 042 046.MI 046.MI.SA 047 048 050 058 059 061 062 071 072 076 501.XP 502.XP 503.XP 504.XP 505.XP
3.3 20 AE.01 AE.08 Tut.01 Tut.08 Tut06 Tut07 003 007 008 010 011 012 013 015 016.MI 016.MI.SA 017 018 501.XP 502.XP
3.4 10 AE.02 AE.03 Tut.01 Tut.03 038 040 047 048 056 057
3.5 20 AE.04 AE.07 AE.08 Tut.01 Tut.02 Tut.03 019 020 038 042 044 054 057 058 059 063 070 080 501.XP 502.XP
3.6 15 AE.01 AE.02 Tut.01 Tut.02 001 005 024 027 028 029 044 045 501.XP 502.XP 503.XP
3.7 5 007 010 012 013 017
3.8 5 003 005 006 016 033
3.9 7 001 004 012 014 017 018 022
3.10 32 AE.01 AE.04 AE.05 Tut.01 Tut.04 Tut.05 008.MI 008.MI.SA 010 011.MI 011.MI.SA 012 014 016.MI 016.MI.SA 017 018.MI 018.MI.SA 019 020 021 022 023 024 025.MI 025.MI.SA 026 028 030 031 033 034
3.11 18 AE.04 AE.05 Tut.04 Tut.05 011 014 016 025 026 027 030 035 036 037 039 040.MI 040.MI.SA 501.XP
3.12 12 AE.01 AE.02 AE.03 Tut.01 Tut.02 Tut.03 003.MI 003.MI.SA 007.MI 007.MI.SA 008 026
Chapter 4: Inverse Functions: Exponential, Logarithmic, and Inverse Trigonometric Functions
4.TF 4 003 005 007 012
4.1 10 Tut.05 024 033 040 044 049 052 056 501.XP 502.XP
4.2 7 AE.03 Tut.01 Tut.02 Tut.04 007 008.MI 008.MI.SA
4.3 9 AE.06 017 021 038 040 041 059 075 086
4.4 22 AE.01 AE.05 AE.09 Tut.01 Tut.06 Tut.08a 010 014 015 016 024 033 047 053 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
4.5 16 AE.02 Tut.02 001 005 006 008 009.MI 009.MI.SA 010 011 012 014 015.MI 015.MI.SA 017 020
4.6 4 Tut.05 030.MI 030.MI.SA 046
4.7 26 AE.01 AE.04 AE.05 Tut.05 001 002 003 004 005 006 008 018 020 021 023 024 034 036 044 045 046 047 054 501.XP 502.XP 503.XP
4.8 34 AE.03 AE.06 Tut.01 Tut.03 Tut.06 002 004 011.MI 011.MI.SA 012.MI 012.MI.SA 013 017 018 021 022 025 028 030 031 043 049 050 054 057.MI 057.MI.SA 058 059 061 062 068 074 075 079
Chapter 5: Applications of Differentiation
5.TF 13 001 002 003 007 008 009 010 011 012 013 014 015 016
5.1 5 001 002 006 011 012
5.2 26 AE.04 AE.05 Tut.04 Tut.07a Tut.07b Tut.07c Tut.08 015 025.MI 025.MI.SA 027.MI 027.MI.SA 028 029 030.MI 030.MI.SA 031 034 035 036 037 039.MI 039.MI.SA 048 049 055
5.3 29 AE.01 AE.02 AE.03 AE.04 AE.05 Tut.01 Tut.02 Tut.04 005.MI 005.MI.SA 006 011 012 016 017 018 019 020 022 023 024 025 029 030.MI 030.MI.SA 035.MI 035.MI.SA 036 044
5.4 4 AE.02 AE.03 AE.05 011
5.5 48 AE.02 AE.03 AE.05 Tut.02 Tut.03 Tut.05 001 002.MI 002.MI.SA 003 006 008 009.MI 009.MI.SA 010 012 013 014 015.MI 015.MI.SA 020 022 024 026 028.MI 028.MI.SA 029 030 031 032 034 036 037 038.MI 038.MI.SA 039 040 041 042.MI 042.MI.SA 044 047 048 050 051 052 055 056
5.6 6 014 017 018 019 020.MI 020.MI.SA
5.7 27 AE.04 AE.05 AE.07 Tut.04 Tut.05 Tut.07 003.MI 003.MI.SA 006.MI 006.MI.SA 007 011 012 039 040 042 044 058 061 066 067.MI 067.MI.SA 068 069 070 071 072 074 075 076 077
Chapter 6: Integrals
6.TF 9 007 008 009 010 011 013 014 015 016
6.1 49 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 037 038 040 041 042 043 044 045 046 047 048 049 050 051
6.2 3 AE.01 012 023
6.3 23 AE.03 AE.05 Tut.03 Tut.05 007 008 011.MI 011.MI.SA 016.MI 016.MI.SA 017 018 023.MI 023.MI.SA 024 025 027 028 032 033 034 038 058
6.4 62 AE.01 AE.09 AE.12 Tut.01 Tut.08 Tut.09 Tut.10 Tut.11 Tut.12 001 002 005 006 007.MI 007.MI.SA 011 019 020 023 024.MI 024.MI.SA 027.MI 027.MI.SA 030 036 039.MI 039.MI.SA 041 042 043.MI 043.MI.SA 046 049 051.MI 051.MI.SA 052.MI 052.MI.SA 057 061 062 063 064 075 076 077 078 079 080.MI 080.MI.SA 081 083 085 086 087 088 089 090 093 094 095 096 100
6.5 43 AE.03 AE.06 AE.09 Tut.03 Tut.09 005 006 008.MI 008.MI.SA 011 015 019 020 026 028 035.MI 035.MI.SA 036 037.MI 037.MI.SA 040.MI 040.MI.SA 042 044 046 047 048.MI 048.MI.SA 052 053 054 057 058 064 065 068 070 073 074 079 080 081 082
6.6 11 Tut.01 001 002 003 004 005 006 007 008 009 010
Chapter 7: Applications of Integration
7.1 30 AE.01 AE.02 AE.04 Tut.01 Tut.02 Tut.04 002.MI 002.MI.SA 003 005 007 009 011 012 013 014 016 017.MI 017.MI.SA 019 021 026 029 031 037 038 052 055 057 058
7.2 42 AE.02 AE.04 AE.08 Tut.02 Tut.03 Tut.08 001.MI 001.MI.SA 004 007 008 009 012 013 014 015 017 020 021 024 044 049.MI 049.MI.SA 050 051 052 053 054 055 056 057 058 059 062 063 066 067 069 070 071 073 074
7.3 29 AE.02 AE.03 AE.04 Tut.02 Tut.03 Tut.04 001 002.MI 002.MI.SA 003.MI 003.MI.SA 008 009 011 015 018.MI 018.MI.SA 020 028 033 034 035 037 039 040 041 042 045 046
7.4 25 AE.01 AE.03 Tut.01 Tut.03 001 002 005.MI 005.MI.SA 006 007 008 010 011.MI 011.MI.SA 013 014 017.MI 017.MI.SA 018 019 020 022 024.MI 024.MI.SA 026
7.5 15 AE.01 AE.02 AE.03 Tut.01 001.MI 001.MI.SA 002 006 009 010 012 013.MI 013.MI.SA 015 018
Chapter 8: Techniques of Integration
8.TF 8 001 002 003 004 005 006 007 008
8.1 26 AE.02 AE.03 AE.04 Tut.02 Tut.04 003 005.MI 005.MI.SA 007 008 013.MI 013.MI.SA 014 021 039 041 042 044 048 052 054 501.XP 502.XP 503.XP 504.XP 505.XP
8.2 32 AE.02 AE.03 AE.05 Tut.02 Tut.03 Tut.05 002 005.MI 005.MI.SA 006 008 015 016 019 022 026 027 032 033 034 035 037 039 040 043 044 047 053 057 501.XP 502.XP 503.XP
8.3 18 AE.01 AE.02 AE.03 Tut.01 Tut.02 Tut.03 003 005 008 022 030 032 034 035 036 501.XP 502.XP 503.XP
8.4 23 AE.01 AE.02 AE.05 Tut.01 Tut.02 Tut.05 017.MI 017.MI.SA 018 022 024 029 031 034 045 046 049 059 060 070 501.XP 502.XP 503.XP
8.5 5 010 013 018 019 025
8.6 19 AE.02 AE.04 AE.05 002 003 006 011 022 027 029 049 060 065 066 072 076 501.XP 502.XP 503.XP
8.7 22 AE.02 AE.04 Tut.02 Tut.04 Tut.06 003.MI 003.MI.SA 013 014 015 020 021.MI 021.MI.SA 025 028 030 036 037 039 040 501.XP 502.XP
8.8 12 AE.02 AE.03 Tut.02 Tut.03 001 002 015 022.MI 022.MI.SA 032 036 501.XP
8.9 33 AE.01 AE.06 AE.09 Tut.01 Tut.06 Tut.09 001.MI 001.MI.SA 002 005 011 020 021 022 031 032 038 042 044.MI 044.MI.SA 057 058.MI 058.MI.SA 059 060 067 073 074 501.XP 502.XP 503.XP 504.XP 505.XP
Chapter 9: Further Applications of Integration
9.1 11 AE.01 AE.08 Tut.01 Tut.08 021 029.MI 029.MI.SA 030 035 036.MI 036.MI.SA
9.2 14 AE.01 AE.02 AE.04 Tut.01 Tut.02 Tut.04 005 024 025 027 028 029 030 032
9.3 8 AE.02 AE.05 Tut.02 Tut.05 001 020 023 025
9.4 12 AE.01 AE.02 Tut.01 Tut.02 003 009 010 011 014 020 021 022
9.5 8 AE.02 AE.06 Tut.02 Tut.06 003.MI 003.MI.SA 004 015
9.6 8 AE.01 Tut.01 001 013 015 016 018 019
9.7 9 AE.01 AE.03 Tut.01 Tut.03 005 006 008 015 017
Chapter 10: Infinite Sequences and Series
10.TF 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
10.1 9 AE.07 AE.08 Tut.08 024 025 026 032 036 037
10.2 23 AE.02 AE.04 AE.07 Tut.02 Tut.04 003 004 009 011 012 013 029 030.MI 030.MI.SA 031 033 034 039.MI 039.MI.SA 040 050 055 056
10.3 22 AE.01 AE.02 AE.03 AE.04 AE.05 AE.08 Tut.01 Tut.02 Tut.03 Tut.04 Tut.05 Tut.08 008 010 011 021.MI 021.MI.SA 023 025 026.MI 026.MI.SA 028
10.4 19 AE.01 AE.02 AE.04 AE.07 AE.09 Tut.01 Tut.04 Tut.07 Tut.09 003.MI 003.MI.SA 005 008 029 030 031 032 035 036
10.5 12 AE.01 AE.02 AE.03 Tut.01 Tut.02 Tut.05 014 017 019 024 025 026
10.6 16 AE.01 AE.05 AE.07 Tut.01 Tut.05 Tut.07 003.MI 003.MI.SA 013.MI 013.MI.SA 014 022 027 029 033 034
10.7 18 AE.01 AE.02 AE.08 Tut.01 Tut.02 Tut.08 036 037 038 039 041 042 044 045.MI 045.MI.SA 046.MI 046.MI.SA 047
10.8 3 AE.02 Tut.02 009
10.9 12 AE.01 AE.02 AE.03 Tut.01 Tut.02 Tut.03 015.MI 015.MI.SA 021.MI 021.MI.SA 022 023
Chapter 11: Three-Dimensional Analytic Geometry and Vectors
11.TF 14 001 002 003 004 005 006 007 008 009 010 011 012 013 014
11.1 14 AE.01 AE.02 AE.04 Tut.01 Tut.02 Tut.04 022.MI 022.MI.SA 025 026 027 046 047 050
11.2 23 AE.01 AE.02 AE.05 AE.08 Tut.01 Tut.02 Tut.05 Tut.08 003 012 014 023 024 028 035 037 038 039 040 045 046 048 051
11.3 18 AE.03 AE.06 Tut.03 Tut.06 007 008 010 011.MI 011.MI.SA 013 014 015 016 019 021 022 023 024
11.4 22 AE.03 AE.04 AE.07 Tut.03 Tut.04 Tut.07 035 037 047 051 052 056 057 058 061 062 063 064 065 066 068 070
11.5 14 AE.01 Tut.01 017 018 019 020 021 022 023 024 041 042 043 044
11.6 14 AE.03 AE.04 AE.06 AE.08 AE.09 Tut.03 Tut.04 Tut.06 Tut.08 001combo 051 052 054 056
11.7 15 AE.01 AE.03 AE.07 Tut.01 Tut.03 Tut.07 026 031 033 035 036 037 047 048 049
11.8 10 AE.03 Tut.03 011 017.MI 017.MI.SA 018 019 024 025 027
Chapter 12: Partial Derivatives
12.TF 10 001 002 003 004 005 006 007 009 011 012
12.1 11 AE.06 Tut.06 029 030 053 054 055 056 057.MI 057.MI.SA 058
12.2 13 AE.01 AE.03 AE.05 Tut.01 Tut.03 Tut.05 013.MI 013.MI.SA 017 025 031 045 046
12.3 23 AE.03 AE.04 AE.07 Tut.03 Tut.04 Tut.07 001 002 021 022 038 044 050 074 076 084 085 088 090 091 094 095 096
12.4 17 AE.01 AE.02 Tut.01 Tut.02 019 020 029.MI 029.MI.SA 030 031 032 033 034 035 036 037 038
12.5 14 AE.02 AE.04 AE.05 Tut.02 Tut.04 Tut.05 028 034.MI 034.MI.SA 035 036 037 038 046
12.6 14 AE.03 AE.04 Tut.03 Tut.04 Tut.07 013 025 026 027 029 039 046 055 056
12.7 29 AE.03 AE.05 AE.06 Tut.03 Tut.05 Tut.06 006 007.MI 007.MI.SA 013 018 019 020 025 027 031 032 036 037.MI 037.MI.SA 039 041.MI 041.MI.SA 045 047 048 049 050 054
12.8 28 AE.01 AE.02 AE.05 Tut.01 Tut.02 Tut.05 005 007 008 009 010 011 012 013.MI 013.MI.SA 014 015 016 017 026 027 029 031 035 037 038 040 041
Chapter 13: Multiple Integrals
13.TF 6 001 002 003 004 005 006
13.1 3 AE.02 Tut.02 009
13.2 13 AE.02 AE.03 AE.04 Tut.02 Tut.03 Tut.04 001 019 021 025 027 031 035
13.3 17 AE.01 AE.03 AE.05 Tut.01 Tut.03 Tut.05 013.MI 013.MI.SA 021 024 027 028 039 043 044 049 051
13.4 18 AE.04 AE.07 AE.11 023 033 038 039 041 045 049 051 052 053 055 056 057 058 070
13.5 14 AE.02 AE.03 AE.04 Tut.02 Tut.03 Tut.04 008 009 019 020 021 028 030 033
13.6 11 AE.02 AE.03 AE.04 AE.05 Tut.02 Tut.03 Tut.04 Tut.05 014 016 020
13.7 2 007 014
13.8 21 AE.01 AE.03 AE.05 Tut.01 Tut.03 Tut.05 002 003 010 015.MI 015.MI.SA 016 017 031 032 033 034 036 037 038 049
13.9 6 AE.02 AE.04 AE.05 Tut.04 060 063
13.10 18 AE.01 AE.03 AE.04 Tut.01 Tut.03 Tut.04 001 002 003.MI 003.MI.SA 009 013 015.MI 015.MI.SA 029 030 031 032
13.11 11 AE.01 AE.02 AE.04 Tut.02 001 013 014 015 021 022 023
Chapter 14: Vector Calculus
14.TF 8 001 002 003 004 005 006 007 008
14.1 5 AE.01 AE.02 003 005 006
14.2 23 AE.03 AE.04 AE.05 Tut.03 Tut.04 Tut.05 003.MI 003.MI.SA 007 009 011 019 021 022 028 029 032 035.MI 035.MI.SA 036 038 039 040
14.3 14 AE.02 AE.03 AE.05 Tut.03 Tut.05 001.MI 001.MI.SA 002 009 029 030 031 032 034
14.4 10 AE.02 AE.04 AE.05 Tut.02 Tut.04 009.MI 009.MI.SA 019 020 028
14.5 8 AE.02 AE.03 AE.05 Tut.03 Tut.05 024 026 031
14.6 24 AE.01 AE.03 AE.05 AE.07 Tut.01 Tut.03 Tut.05 Tut.07 004 005.MI 005.MI.SA 006 009 012 013 014 015 019 021 022.MI 022.MI.SA 023 026 029
14.7 15 AE.03 AE.04 AE.06 Tut.03 Tut.04 009 012 014 022 023 026 032 037 038 039
14.8 7 AE.01 AE.02 Tut.01 Tut.02 005 012 018
14.9 10 AE.01 AE.02 Tut.01 Tut.02 001 015 016 017 018 020
Chapter 15: Second-Order Differential Equations
15.TF 4 001 002 003 004
15.1 16 AE.03 AE.04 AE.07 Tut.03 Tut.07 001 005 008 010 012 023 026 028 029 030 031
15.2 10 AE.01 AE.03 AE.04 Tut.01 Tut.03 Tut.04 002 006 019 020
15.3 13 AE.01 AE.02 AE.03 Tut.01 Tut.02 Tut.03 001 003 005 009 010 011 012
15.4 8 AE.01 AE.02 Tut.01 Tut.02 002 004 005 008
Total 2493 (4)