.

Calculus 1st edition

Textbook Cover

Soo T. Tan
Publisher: Cengage Learning

enhanced content

Enhanced Webassign

Includes pedagogical tools such as assignable simulations, textbook examples, links to the eBook, and algorithmic solutions. Specific features vary from book to book.

eBook

eBook

Your students can pay an additional fee for access to an online version of the textbook that might contain additional interactive features.

personal study plan

Personal Study Plan Module

Your students can use chapter and section assessments to gauge their mastery of the material and generate individualized study plans that include various online, interactive multimedia resources.

lifetime of edition

Lifetime of Edition (LOE)

Your students are allowed unlimited access to WebAssign courses that use this edition of the textbook at no additional cost.

textbook resources

Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

Try an Example Assignment


Terms of Use

Access is contingent on use of this textbook in the instructor's classroom.

Student Pricing

Academic Term Homework Homework and eBook eBook Upgrade
Semester $47.00 $75.00 $35.00
Quarter $47.00 $75.00 $35.00
Multi-term $65.00 $110.00 $55.00
High School $38.75 $61.75 $28.75

Online price per student per course or lab, bookstore price varies. Access cards can be packaged with most any textbook, please see your textbook rep or contact WebAssign

Table of Contents

  • Chapter 0: Preliminaries
    • 0.1: Lines (31)
    • 0.2: Functions and Their Graphs (27)
    • 0.3: The Trigonometric Functions (19)
    • 0.4: Combining Functions (25)
    • 0.5: Graphing Calculators and Computers (19)
    • 0.6: Mathematical Models (22)
    • 0:R: Review Exercises (7)

  • Chapter 1: Limits
    • 1.1: An Intuitive Introduction to Limits (26)
    • 1.2: Techniques for Finding Limits (27)
    • 1.3: A Precise Definition of a Limit (16)
    • 1.4: Continuous Functions (26)
    • 1.5: Tangent Lines and Rates of Change (26)
    • 1.R: Review Exercises

  • Chapter 2: The Derivative
    • 2.1: The Derivative (25)
    • 2.2: Basic Rules of Differentiation (46)
    • 2.3: The Product and Quotient Rules (36)
    • 2.4: The Role of the Derivative in the Real World (19)
    • 2.5: Derivatives of Trigonometric Functions (25)
    • 2.6: The Chain Rule (21)
    • 2.7: Implicit Differentiation (27)
    • 2.8: Related Rates (22)
    • 2.9: Differentials and Linear Approximations (27)
    • 2.R: Review Exercises (6)

  • Chapter 3: Applications of the Derivative
    • 3.1: Extrema Functions (41)
    • 3.2: The Mean Value Theorem (18)
    • 3.3: Increasing and Decreasing Functions and the First Derivative Test (23)
    • 3.4: Concavity and Inflection Points (25)
    • 3.5: Limits Involving Infinity; Asymptotes (32)
    • 3.6: Curve Sketching (27)
    • 3.7: Optimization Problems (40)
    • 3.8: Newton's Method (8)
    • 3.R: Review Exercises (9)

  • Chapter 4: Integration
    • 4.1: Indefinite Integrals (50)
    • 4.2: Integration by Substitution (39)
    • 4.3: Area (24)
    • 4.4: The Definite Integral (21)
    • 4.5: The Fundamental Theorem of Calculus (42)
    • 4.6: Numerical Integration (29)
    • 4.R: Review Exercises (6)

  • Chapter 5: Applications of the Definite Integral
    • 5.1: Areas Between Curves (25)
    • 5.2: Volumes: Disks, Washers, and Cross Sections (21)
    • 5.3: Volumes Using Cylindrical Shells (19)
    • 5.4: Arc Length and Areas of Surfaces of Revolution (21)
    • 5.5: Work (19)
    • 5.6: Fluid Pressure and Force (19)
    • 5.7: Moments and Center of Mass (19)
    • 5.R: Review Exercises

  • Chapter 6: The Transcendental Functions
    • 6.1: The Natural Logarithmic Function (49)
    • 6.2: Inverse Functions (18)
    • 6.3: Exponential Functions (26)
    • 6.4: General Exponential and Logarithmic Functions (32)
    • 6.5: Inverse Trigonometric Functions (33)
    • 6.6: Hyperbolic Functions (21)
    • 6.7: Indeterminate Forms and l'Hopital's Rule (35)
    • 6.R: Review Exercises (3)

  • Chapter 7: Techniques of Integration
    • 7.1: Integration by Parts (41)
    • 7.2: Trigonometric Integrals (22)
    • 7.3: Trigonometric Substitutions (22)
    • 7.4: The Method of Partial Fractions (22)
    • 7.5: Integration Using Tables of Integrals and a CAS; a Summary of Techniques (23)
    • 7.6: Improper Integrals (45)
    • 7.R: Review Exercises (5)

  • Chapter 8: Differential Equations
    • 8.1: Differential Equations: Separable Equations (23)
    • 8.2: Direction Fields and Euler's Method (20)
    • 8.3: The Logistic Equation (20)
    • 8.4: First-Order Linear Differential Equations (23)
    • 8.R: Review Exercises

  • Chapter 9: Infinite Sequences and Series
    • 9.1: Sequences (27)
    • 9.2: Series (31)
    • 9.3: The Integral Test (23)
    • 9.4: The Comparison Tests (19)
    • 9.5: Alternating Series (19)
    • 9.6: Absolute Convergence; the Ratio and Root Tests (19)
    • 9.7: Power Series (27)
    • 9.8: Taylor and Maclaurin Series (19)
    • 9.9: Approximation by Taylor Polynomials (19)
    • 9.R: Review Exercises

  • Chapter 10: Conic Sections, Plane Curves, and Polar Coordinates
    • 10.1: Conic Sections (19)
    • 10.2: Plane Curves and Parametric Equations (19)
    • 10.3: The Calculus of Parametric Equations (23)
    • 10.4: Polar Coordinates (19)
    • 10.5: Areas and Arc Lengths in Polar Coordinates (19)
    • 10.6: Conic Sections in Polar Coordinates (19)
    • 10.R: Review Exercises

  • Chapter 11: Vectors and the Geometry of Space
    • 11.1: Vectors in the Plane (14)
    • 11.2: Coordinate Systems and Vectors in Three-Space (18)
    • 11.3: The Dot Product (16)
    • 11.4: The Cross Product (16)
    • 11.5: Lines and Planes in Space (14)
    • 11.6: Surfaces in Space (14)
    • 11.7: Cylindrical and Spherical Coordinates (14)
    • 11.R: Review Exercises

  • Chapter 12: Vector-Valued Functions
    • 12.1: Vector-Valued Functions and Space Curves (14)
    • 12.2: Differentiation and Integration of Vector- Valued. Functions (12)
    • 12.3: Arc Length and Curvature (16)
    • 12.4: Velocity and Acceleration (16)
    • 12.5: Tangential and Normal Components of Acceleration (14)
    • 12.R: Review Exercises

  • Chapter 13: Functions of Several Variables
    • 13.1: Functions of Two or More Variables (14)
    • 13.2: Limits and Continuity (17)
    • 13.3: Partial Derivatives (18)
    • 13.4: Differentials (16)
    • 13.5: The Chain Rule (14)
    • 13.6: Directional Derivatives and Gradient Vectors (14)
    • 13.7: Tangent Planes and Normal Lines (14)
    • 13.8: Extrema of Functions of Two Variables (16)
    • 13.9: Lagrange Multipliers (14)
    • 13.R: Review Exercises

  • Chapter 14: Multiple Integrals
    • 14.1: Double Integrals (14)
    • 14.2: Iterated Integrals (22)
    • 14.3: Double Integrals in Polar Coordinates (16)
    • 14.4: Applications of Double Integrals (14)
    • 14.5: Surface Area (14)
    • 14.6: Triple Integrals (16)
    • 14.7: Triple Integrals in Cylindrical and Spherical Coordinates (16)
    • 14.8: Change of Variables in Multiple Integrals (14)
    • 14.R: Review Exercises

  • Chapter 15: Vector Analysis
    • 15.1: Vector Fields (14)
    • 15.2: Divergence and Curl (16)
    • 15.3: Line Integrals (18)
    • 15.4: Independence of Path and Conservative Vector Fields (20)
    • 15.5: Green's Theorem (16)
    • 15.6: Parametric Surfaces (14)
    • 15.7: Surface Integrals (14)
    • 15.8: The Divergence Theorem (14)
    • 15.9: Stoke's Theorem (12)
    • 15.R: Review Exercises

  • Chapter QP: Quick Prep Topics
    • QP.1 Definition and Representations of Functions (14)
    • QP.2 Working with Representations of Functions (14)
    • QP.3 Function Notation (14)
    • QP.4 Domain and Range of a Function (14)
    • QP.5 Solving Linear Equations (14)
    • QP.6 Linear Functions (17)
    • QP.7 Parabolas (14)
    • QP.8 Factoring Quadratic Equations and Finding x-intercepts of a Quadratic Function (14)
    • QP.9 Polynomials (17)
    • QP.10 More about Factoring Polynomials (14)
    • QP.11 Finding Roots (14)
    • QP.12 Dividing Polynomials (14)
    • QP.13 Rational Functions (17)
    • QP.14 Root Functions (17)
    • QP.15 Rationalizing the Numerator or Denominator (12)
    • QP.16 Exponential Functions (14)
    • QP.17 Logarithmic Functions (17)
    • QP.18 Trigonometric Functions and the Unit Circle (14)
    • QP.19 Graphs of Trigonometric Functions (14)
    • QP.20 Trigonometric Identities (17)
    • QP.21 Special Functions (14)
    • QP.22 Algebraic Combinations of Functions (14)
    • QP.23 Composition of Functions (14)
    • QP.24 Transformations of Functions (14)
    • QP.25 Inverse Functions (17)

QuickPrep

QuickPrep reviews twenty five key precalculus topics to help your students with their readiness for calculus. Assign any of these new QuickPrep modules (or any of the questions from the modules) early in the course, or whenever you think the review is most needed throughout the course. If additional review is needed, assign the new JIT (just-in-time) problems, carefully selected as prerequisite review for each section.

Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

Question Group Key

QP
QuickPrep
MI
Master It


Question Availability Color Key

BLACK questions are available now
GREY questions are under development


Group Quantity Questions
Chapter 0: Preliminaries
0.R 7 005 006 019 049 050 052 053
0.1 31 002 006 008 010 014 016 024 025 028 030 034 037 038 042 047 048 051 052 054 057 062 066 067 073 075 076 078 080 081 082 086
0.2 27 002 006 011 012 013 016 018 019 021 022 024 027 028 029 030 033 034 036 040 046 050 054 060 062 063 066 070
0.3 19 002 014 017 018 022 026 028 029 032 048 050 056 058 059 062 063 065 066 067
0.4 25 008 009 012 014 015 015-016.501.XP.MI 015-016.501.XP.MI.SA 018 020 021 025 026 028 030 032 034 038 042 046 048.MI 048.MI.SA 052 056 060 068
0.5 19 002 003 004 006 008 010 011 012 013 015 016 018 022 024 029 030 031 033 034
0.6 22 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017 018 019 020 021 025 027 029
Chapter QP: Quick Prep Topics
QP.1 14 N.001 N.001.Reading 001 002 003 004 005 006 007 008 009 010 011.MI 012.MI
QP.2 14 N.001 N.001.Reading 001.MI 002.MI 003 004 005.MI 006 007 008.MI 009.MI 010.MI 011.MI 012
QP.3 14 N.001 N.001.Reading 001 002.MI 003.MI 004.MI 005.MI 006.MI 007.MI 008.MI 009.MI 010.MI 011.MI 012.MI
QP.4 14 N.001 N.001.Reading 001 002.MI 003.MI 004.MI 005.MI 006.MI 007.MI 008 009 010.MI 011.MI 012.MI
QP.5 14 N.001 N.001.Reading 001 002 003 004.MI 005.MI 006 007.MI 008.MI 009.MI 010.MI 011.MI 012.MI
QP.6 17 N.001 N.001.Reading 001.MI 002.MI 003.MI 004.MI 005.MI 006.MI 007.MI 008 009 010.MI 011.MI 012.MI 013.MI 014 015
QP.7 14 N.001 N.001.Reading 001 002.MI 003.MI 004 005.MI 006 007 008.MI 009 010 011 012.MI
QP.8 14 N.001 N.001.Reading 001.MI 002 003 004.MI 005.MI 006.MI 007.MI 008 009 010 011 012.MI
QP.9 17 N.001 N.001.Reading 001 002 003 004 005.MI 006.MI 007 008 009.MI 010 011 012 013 014 015
QP.10 14 N.001 N.001.Reading 001 002 003 004.MI 005.MI 006.MI 007.MI 008.MI 009.MI 010 011.MI 012.MI
QP.11 14 N.001 N.001.Reading 001 002.MI 003 004 005 006.MI 007 008 009.MI 010.MI 011 012
QP.12 14 N.001 N.001.Reading 001 002 003 004 005.MI 006.MI 007 008.MI 009.MI 010.MI 011.MI 012.MI
QP.13 17 N.001 N.001.Reading 001 002.MI 003.MI 004.MI 005 006.MI 007 008.MI 009 010.MI 011.MI 012.MI 013.MI 014.MI 015
QP.14 17 N.001 N.001.Reading 001 002 003 004 005 006 007.MI 008 009 010.MI 011 012.MI 013.MI 014 015
QP.15 12 N.001 N.001.Reading 001.MI 002 003.MI 004 005 006 007 008 009.MI 010
QP.16 14 N.001 N.001.Reading 001 002 003 004 005 006 007 008 009 010 011.MI 012
QP.17 17 N.001 N.001.Reading 001.MI 002.MI 003.MI 004 005 006 007 008.MI 009 010.MI 011.MI 012.MI 013.MI 014.MI 015.MI
QP.18 14 N.001 N.001.Reading 001.MI 002 003 004.MI 005 006 007.MI 008 009 010 011 012
QP.19 14 N.001 N.001.Reading 001.MI 002.MI 003.MI 004 005 006 007 008 009 010 011 012
QP.20 17 N.001 N.001.Reading 001 002 003.MI 004.MI 005.MI 006 007 008 009 010 011 012 013 014 015
QP.21 14 N.001 N.001.Reading 001 002 003.MI 004 005 006 007 008 009 010 011 012
QP.22 14 N.001 N.001.Reading 001 002 003.MI 004.MI 005 006 007 008.MI 009 010 011 012
QP.23 14 N.001 N.001.Reading 001.MI 002.MI 003.MI 004.MI 005.MI 006.MI 007.MI 008 009 010 011 012
QP.24 14 N.001 N.001.Reading 001 002 003 004 005 006 007 008 009 010.MI 011.MI 012
QP.25 17 N.001 N.001.Reading 001 002 003 004 005.MI 006.MI 007.MI 008.MI 009.MI 010.MI 011 012 013 014.MI 015.MI
Chapter 1: Limits
1.1 26 002 004 006 007 010 012.MI 012.MI.SA 014 015 017 018.MI 018.MI.SA 020 021 022 024 026 027 029 030 035 037 038 040 042 043
1.2 27 002 006 008 013 017 022 026 030 033 036 041 041-076.501.XP.MI 041-076.501.XP.MI.SA 041-076.502.XP.MI 041-076.502.XP.MI.SA 044 046 049 052 056.MI 056.MI.SA 066 068 072 075 082 086
1.3 16 001 002 003 004 005 006 007 009 011 014 019 020 022 031 032 034
1.4 26 004 006 008 012 013 016 021 023 026 027 028 030.MI 030.MI.SA 031 034 036 040 046 050 052 056 059 060 062 071 076
1.5 26 001 002 003 004 006 008 011 012 013 014 016 017 019 020 021 023 024 025 027 028 029 030 032 036 038 040
Chapter 2: The Derivative
2.R 6 009 011 014 028 079 082
2.1 25 004 007 009 011 012 014 016 018 020 025 028 030 032 033 034 037 040 041 042 043 045 048 054 057 058
2.2 46 001 001-032.501.XP.MI 001-032.501.XP.MI.SA 002 004 005 006 008 010 011 012 013 016 017 018 019 020 022 023 024 026 028 029 030 031 032 034 035-038.501.XP.MI 035-038.501.XP.MI.SA 036 038 040 042 043 046 048 050 055 060 061 062 063 068 070 071 076
2.3 36 002 003 005 009 012 014 016 017 017-032.501.XP.MI 017-032.501.XP.MI.SA 018 022 025 027 028 029 033 034 035 036 038 040 041 048 049 050 053-056.501.XP.MI 053-056.501.XP.MI.SA 056 057 058 060 065 066 068 074
2.4 19 002 004 006 010 012 016 018 022 024 025 027 028 030 033 035 036 037 038 039
2.5 25 001-022.501.XP.MI 001-022.501.XP.MI.SA 001-022.502.XP.MI 001-022.502.XP.MI.SA 001-022.503.XP.MI 001-022.503.XP.MI.SA 002 004 006 008 009 010 012 014 016 017 018 019 021 024 028 035 036 038 046
2.6 21 007-056.501.XP.MI 007-056.501.XP.MI.SA 008 016 020 028 032 036 044 047 058 061 069 075 079 080 084 087 090 097 099
2.7 27 001 001-020.501.XP.MI 001-020.501.XP.MI.SA 001-020.502.XP.MI 001-020.502.XP.MI.SA 001-020.503.XP.MI 001-020.503.XP.MI.SA 002 004 006 009 012 014 016 019 024 025 028 033 035 036 038 040 041 043 045 046
2.8 22 002 004 006 008 011 013 014 018 019 021 022 025 026 027 028 031 032 035 036 037 040 042
2.9 27 002 004 006 008 009 010 011 012 013 015-018.501.XP.MI 015-018.501.XP.MI.SA 018 022 024 025 026 027 030 032 033 035 037 038 039 040 042 043
Chapter 3: Applications of the Derivative
3.R 9 004 005 021 022 026 044 045 048 070
3.1 41 001 003 004 006 016 017 024 025-042.501.XP.MI 025-042.501.XP.MI.SA 025-042.502.XP.MI 025-042.502.XP.MI.SA 025-042.503.XP.MI 025-042.503.XP.MI.SA 025-042.504.XP.MI 025-042.504.XP.MI.SA 028 032 034 038 043 043-060.501.XP.MI 043-060.501.XP.MI.SA 043-060.502.XP.MI 043-060.502.XP.MI.SA 043-060.503.XP.MI 043-060.503.XP.MI.SA 043-060.504.XP.MI 043-060.504.XP.MI.SA 045 050 051 052 054 056 060 061 063 067 072 076 078
3.2 18 002 003 005 007 009 011 013 014 015 019 020 023 038 040 042 043 044 048
3.3 23 001 003 004 006 007 008 010 011 013 016 018 022 024 025 027 028 030 034 035 037 042 045 056
3.4 25 003 004 006 007 010 011 012 016 018 022 026 028 031 038 041 042 044 046 050 052 054 060 062 066 067
3.5 32 002 003 004 006 007-036.501.XP.MI 007-036.501.XP.MI.SA 007-036.502.XP.MI 007-036.502.XP.MI.SA 008 009 012 016 019 020 026 030 034 035 040 047 049 049-056.501.XP.MI 049-056.501.XP.MI.SA 050 051 053 054 058 061 062 064 066
3.6 27 003 004 005 007 008 010 012 014 015 016 017 019 020 022 023 024 025 026 027 028 029 030 034 037 041 043 046
3.7 40 001-006.501.XP.MI 001-006.501.XP.MI.SA 001-006.502.XP.MI 001-006.502.XP.MI.SA 002 004 006 008 009 010 011 012 013 014 015 016 018 019 020 021 025 026 028 029 030 032 034 035 036 037 038 039 040 042 044 046 055 059 061 065
3.8 8 001 004 005 006 007 022 024 030
Chapter 4: Integration
4.R 6 001-020.501.XP.MI 001-020.501.XP.MI.SA 025 026 033 040
4.1 50 001-030.501.XP.MI 001-030.501.XP.MI.SA 001-030.502.XP.MI 001-030.502.XP.MI.SA 001-030.503.XP.MI 001-030.503.XP.MI.SA 001-030.504.XP.MI 001-030.504.XP.MI.SA 001-030.505.XP.MI 001-030.505.XP.MI.SA 001-030.506.XP.MI 001-030.506.XP.MI.SA 005 007 009 010 011 013 017 019 022 026 030 035-046.501.XP.MI 035-046.501.XP.MI.SA 035-046.502.XP.MI 035-046.502.XP.MI.SA 035-046.503.XP.MI 035-046.503.XP.MI.SA 035-046.504.XP.MI 035-046.504.XP.MI.SA 035-046.505.XP.MI 035-046.505.XP.MI.SA 036 037 038 039 045 046 047 050 051 058 065 066 067 070 075 076 079
4.2 39 001-006.501.XP.MI 001-006.501.XP.MI.SA 001-006.502.XP.MI 001-006.502.XP.MI.SA 001-006.503.XP.MI 001-006.503.XP.MI.SA 004 005 007 007-044.501.XP.MI 007-044.501.XP.MI.SA 007-044.502.XP.MI 007-044.502.XP.MI.SA 007-044.503.XP.MI 007-044.503.XP.MI.SA 007-044.504.XP.MI 007-044.504.XP.MI.SA 008 010 012 014 015 017 018 020 022 023 029 032 034 035 038 039 044 048 049 054 055 057
4.3 24 003 005 011 015 018 020 025 028 029 031 033 035 038 039-044.501.XP.MI 039-044.501.XP.MI.SA 039-044.502.XP.MI 039-044.502.XP.MI.SA 043 044 045 048 052 059 060
4.4 21 001 002 005 006 008 010 012 015 016 017 018 019-026.501.XP.MI 019-026.501.XP.MI.SA 022 024 026 028 029 030 031 032
4.5 42 003-012.501.XP.MI 003-012.501.XP.MI.SA 003-012.502.XP.MI 003-012.502.XP.MI.SA 004 008 012 013 013-032.501.XP.MI 013-032.501.XP.MI.SA 013-032.502.XP.MI 013-032.502.XP.MI.SA 013-032.503.XP.MI 013-032.503.XP.MI.SA 013-032.504.XP.MI 013-032.504.XP.MI.SA 013-032.505.XP.MI 013-032.505.XP.MI.SA 013-032.506.XP.MI 013-032.506.XP.MI.SA 013-032.507.XP.MI 013-032.507.XP.MI.SA 016 018 021 024 026 030 031 039 042 043 046 053 055 061 063-068.501.XP.MI 063-068.501.XP.MI.SA 065 067 079 084
4.6 29 001 001-008.501.XP.MI 001-008.501.XP.MI.SA 001-008.502.XP.MI 001-008.502.XP.MI.SA 002 003 004 006 007 008 010 012 013 014 016 018 019 020 022 023 024 025 026 040 041 042 043 044
Chapter 5: Applications of the Definite Integral
5.1 25 002 004 006 009-038.501.XP.MI 009-038.501.XP.MI.SA 009-038.502.XP.MI 009-038.502.XP.MI.SA 013 016 017 020 021 022 024 026 030 031 033 036 038 053 055 058 059 061
5.2 21 002 004 006 007 010 011 017 021 023 025 033-038.501.XP.MI 033-038.501.XP.MI.SA 033-038.502.XP.MI.SA 038 046 047 049 051 053 055 056 064
5.3 19 002 003 004 005 006 009 010 013 018 020 024 028 032 033 041 042 043 045 047
5.4 21 002 004 007 008 012 014 016 018 020 025 026 028 029-038.501.XP.MI 029-038.501.XP.MI.SA 032 033 035 036 038 045 051
5.5 19 002 003 004 006 008 009 010 013 016 018 021 023 025 026 028 030 031 035 036
5.6 19 001 003 004 005 006 007 008 009 010 011 012 013 014 015 017 019 020 022 023
5.7 19 002 004 008 010 012 013 016 020 021 022 024 026 028 030 032 034 038 042 045
Chapter 6: The Transcendental Functions
6.R 3 054 068 100
6.1 49 002 009 014 019 020 024 027 027-048.501.XP.MI 027-048.501.XP.MI.SA 027-048.502.XP.MI 027-048.502.XP.MI.SA 027-048.503.XP.MI 027-048.503.XP.MI.SA 027-048.504.XP.MI 027-048.504.XP.MI.SA 027-048.505.XP.MI 027-048.505.XP.MI.SA 028 029 030 036 037 040 042 046 048 049-052.501.XP.MI 049-052.501.XP.MI.SA 056 060 064 071-084.501.XP.MI 071-084.501.XP.MI.SA 071-084.502.XP.MI 071-084.502.XP.MI.SA 071-084.503.XP.MI 071-084.503.XP.MI.SA 071-084.504.XP.MI 071-084.504.XP.MI.SA 071-084.505.XP.MI 071-084.505.XP.MI.SA 071-084.506.XP.MI 071-084.506.XP.MI.SA 078 082 086 106 109 116
6.2 18 008 010 015 017 022 023 028 034 035 039 043 048 050 051 052 053 054 055
6.3 26 004 008 009 018 019 021 026 028 030 032 036 037 039 049 053 055 060 062 067 077 082 090 092 099 104 110
6.4 32 004 006 009 010 012 018 020 023 026 030 032 033 035 039 043-050.501.XP.MI 043-050.501.XP.MI.SA 044 045 046 050 052 053 054 055 057 058 059 062 065 066 067 069
6.5 33 009 018 026 034 036 040 044 046 047 048 052 054 056 065-086.501.XP.MI 065-086.501.XP.MI.SA 065-086.502.XP.MI 065-086.502.XP.MI.SA 065-086.503.XP.MI 065-086.503.XP.MI.SA 065-086.504.XP.MI 065-086.504.XP.MI.SA 065-086.505.XP.MI 065-086.505.XP.MI.SA 065-086.506.XP.MI 065-086.506.XP.MI.SA 066 071 074 080 083 089 501.XP.MI 501.XP.MI.SA
6.6 21 001 004 019-054.501.XP.MI 019-054.501.XP.MI.SA 020 022 023 025 028 030 037 039 042 043 044 046 053 056 058 062 063
6.7 35 001-060.501.XP.MI 001-060.501.XP.MI.SA 001-060.502.XP.MI 001-060.502.XP.MI.SA 001-060.503.XP.MI 001-060.503.XP.MI.SA 001-060.504.XP.MI 001-060.504.XP.MI.SA 001-060.505.XP.MI 001-060.505.XP.MI.SA 001-060.506.XP.MI 001-060.506.XP.MI.SA 001-060.507.XP.MI 001-060.507.XP.MI.SA 001-060.508.XP.MI 001-060.508.XP.MI.SA 004 007 008 010 013 016 017 024 026 028 031 035 040 042 046 049 057 060 073
Chapter 7: Techniques of Integration
7.R 5 036 043 044 051 053
7.1 41 001 001-044.501.XP.MI 001-044.501.XP.MI.SA 001-044.502.XP.MI 001-044.502.XP.MI.SA 001-044.503.XP.MI 001-044.503.XP.MI.SA 001-044.504.XP.MI 001-044.504.XP.MI.SA 001-044.505.XP.MI 001-044.505.XP.MI.SA 001-044.506.XP.MI 001-044.506.XP.MI.SA 002 004 006 010 012 013 014 018 020 022 030 031 036 037 040 042 044 046 052 055 057 058 059 060 061 062 067 069
7.2 22 001-048.501.XP.MI 001-048.501.XP.MI.SA 001-048.502.XP.MI 001-048.502.XP.MI.SA 004 007 013 016 018 023 027 030 032 037 040 046 049 052 055 056 060 061
7.3 22 001-032.501.XP.MI 001-032.501.XP.MI.SA 001-032.502.XP.MI 001-032.502.XP.MI.SA 004 006 010 011 012 013 016 020 022 024 026 030 031 034 037 038 042 047
7.4 22 003 006 007-051.501.XP.MI 007-051.501.XP.MI.SA 007-051.502.XP.MI 007-051.502.XP.MI.SA 011 014 018 022 024 026 032 034 037 042 045 050 058 062 066 072
7.5 23 002 004 009 012 016 020 023 024 027 028 036 040 043 044 064 070 074 082 086 090 094 096 100
7.6 45 004 005 007 007-042.501.XP.MI 007-042.501.XP.MI.SA 007-042.502.XP.MI 007-042.502.XP.MI.SA 007-042.503.XP.MI 007-042.503.XP.MI.SA 007-042.504.XP.MI 007-042.504.XP.MI.SA 007-042.505.XP.MI 007-042.505.XP.MI.SA 007-042.506.XP.MI 007-042.506.XP.MI.SA 007-042.507.XP.MI 007-042.507.XP.MI.SA 007-042.508.XP.MI 007-042.508.XP.MI.SA 007-042.509.XP.MI 007-042.509.XP.MI.SA 007-042.510.XP.MI 007-042.510.XP.MI.SA 007-042.511.XP.MI 007-042.511.XP.MI.SA 007-042.512.XP.MI 007-042.512.XP.MI.SA 012 014 016 021 023 024 028 029 030 032 035 038 042 046 048 053 054 077
Chapter 8: Differential Equations
8.1 23 009 009-018.501.XP.MI 009-018.501.XP.MI.SA 009-018.502.XP.MI 009-018.502.XP.MI.SA 010 012 014 016 017 018 020 024 026 036 037 039 042 048 050 051 052 058
8.2 20 001 002 003 004 005 006 007 008 018 019 020 021 022 023 024 025 026 028 035 036
8.3 20 001 002 003 004 005 006 007 010 011 012 014 015 016 019 021 022 023 024 025 026
8.4 23 005-016.501.XP.MI 005-016.501.XP.MI.SA 005-016.502.XP.MI 005-016.502.XP.MI.SA 006 008 010 011 012 013 014 015 016 017 018 019 021 022 025 031 033 036 040
Chapter 9: Infinite Sequences and Series
9.1 27 001 006 008 011 013-042.501.XP.MI 013-042.501.XP.MI.SA 013-042.502.XP.MI 013-042.502.XP.MI.SA 013-042.503.XP.MI 013-042.503.XP.MI.SA 013-042.504.XP.MI 013-042.504.XP.MI.SA 014 016 023 025 026 028 030 032 035 037 038 049 054 055 058
9.2 31 002 006 007-014.501.XP.MI 007-014.501.XP.MI.SA 007-014.502.XP.MI 007-014.502.XP.MI.SA 008 014 029-054.501.XP.MI 029-054.501.XP.MI.SA 029-054.502.XP.MI 029-054.502.XP.MI.SA 032 033 036 038 042 043 046 048 051 054 055-058.501.XP.MI 055-058.501.XP.MI.SA 059-062.501.XP.MI 059-062.501.XP.MI.SA 063 064 065 066 071
9.3 23 001-008.501.XP.MI 001-008.501.XP.MI.SA 002 006 008 010 012 016 018 019 020 021 023 024 025 026 027 038 044 045-050.501.XP.MI 045-050.501.XP.MI.SA 046 048
9.4 19 001 006 007 009 010 012 014 018 020 023 024 026 030 031 033 034 035 036 037
9.5 19 002 003 006 009 010 012 013 014 015 018 019 020 021 022 023 024 025 026 038
9.6 19 002 004 006 009 011 012 013 015 017 019 020 023 024 028 029 030 032 034 035
9.7 27 001-030.501.XP.MI 001-030.501.XP.MI.SA 001-030.502.XP.MI 001-030.502.XP.MI.SA 001-030.503.XP.MI 001-030.503.XP.MI.SA 001-030.504.XP.MI 001-030.504.XP.MI.SA 002 003 004 005 008 009 011 012 015 017 018 022 023 024 028 029 033 045 047
9.8 19 005 009 015 016 017 018 021 025 026 027 033 037 046 050 054 060 061 063 066
9.9 19 004 006 009 010 011 012 013 014 016 020 021 022 025 027 032 033 034 035 045
Chapter 10: Conic Sections, Plane Curves, and Polar Coordinates
10.1 19 003 006 012 017 024 029 037 040 045 046 051 057 060 063 075 080 085 091 102
10.2 19 002 003 004 005 007 008 010 011 012 016 017 018 019 021 022 023 024 028 034
10.3 23 002 004 007-008.501.XP.MI 007-008.501.XP.MI.SA 008 012 016 018 019 021 025 029 030 031-036.501.XP.MI 031-036.501.XP.MI.SA 033 040 049 053 056 059 062 075
10.4 19 002 006 010 013 020 023 027 030 034 038 047 051 054 055 063 068 070 071 074
10.5 19 004 005 010 012 022 023 026 027 033 036 038 042 043 046 050 053 056 057 061
10.6 19 003 004 005 007 008 009 011 012 013 015 016 017 018 019 021 022 023 025 026
Chapter 11: Vectors and the Geometry of Space
11.1 14 008 012 014 018 022 024 028 030 042 046 056 062 064 068
11.2 18 008 016 020 024 026 030 031-034.501.XP.MI 031-034.501.XP.MI.SA 031-034.502.XP.MI 031-034.502.XP.MI.SA 034 036 042 056 060 070 074 078
11.3 16 003-008.501.XP.MI 003-008.501.XP.MI.SA 004 008 014 020 022 026 034 040 042 046 047 048 056 057
11.4 16 006 010 012 013-016.501.XP.MI 013-016.501.XP.MI.SA 014 016 018 020 022 024 028 030 034 038 039
11.5 14 004 008 012 016 020 024 030 032 034 040 048 052 056 062
11.6 14 004 008 012 016 022 024 026 030 034 038 046 050 051 052
11.7 14 002 010 014 018 020 022 026 032 038 040 048 056 062 066
Chapter 12: Vector-Valued Functions
12.1 14 002 006 010 014 018 022 026 034 036 038 042 044 046 050
12.2 12 004 008 012 014 018 020 022 024 030 032 034 038
12.3 16 001-008.501.XP.MI 001-008.501.XP.MI.SA 004 008 012 014 016 018 020 022 027 030 036 048 050 052
12.4 16 004 008 009 010 012 013 013-018.501.XP.MI 013-018.501.XP.MI.SA 014 016 017 018 024 028 030 035
12.5 14 002 006 007 008 012 014 016 022 024 028 030 036 040 044
Chapter 13: Functions of Several Variables
13.1 14 004 006 010 014 022 028 034 048 054 062 068 073 076 079
13.2 17 014 016 018 020 024 028 030 031-040.501.XP.MI 031-040.501.XP.MI.SA 031-040.502.XP.MI 031-040.502.XP.MI.SA 032 034 043 044 046 048
13.3 18 004 006 006-029.501.XP.MI 006-029.501.XP.MI.SA 010 014 018 026 030 034-039.501.XP.MI 034-039.501.XP.MI.SA 038 040 042 044 054 072 082
13.4 16 002 003-020.501.XP.MI 003-020.501.XP.MI.SA 006 010 012 014 018 022 024 026 028 030 032 035 038
13.5 14 004 006 008 012 014 018 020 024 026 028 032 036 040 042
13.6 14 004 006 008 012 016 022 028 030 032 034 038 046 048 052
13.7 14 006 008 010 016 018 020 022 024 026 028 030 032 038 040
13.8 16 006 008 010 016 018 020 022 024 034 038 040 044 048 056 501.XP.MI 501.XP.MI.SA
13.9 14 004 008 010 012 014 016 018 020 022 024 026 034 038 040
Chapter 14: Multiple Integrals
14.1 14 002 003 004 006 007 008 010 012 013 014 015 016 018 020
14.2 22 001-012.501.XP.MI 001-012.501.XP.MI.SA 002 006 010 013-032.501.XP.MI 013-032.501.XP.MI.SA 013-032.502.XP.MI 013-032.502.XP.MI.SA 013-032.503.XP.MI 013-032.503.XP.MI.SA 014 018 022 026 030 034 038 042 046 056 066
14.3 16 002 004 006 010 012 014 017-026.501.XP.MI 017-026.501.XP.MI.SA 018 022 026 030 032 034 038 042
14.4 14 002 003 004 006 008 010 011 012 014 016 018 020 022 026
14.5 14 002 003 004 005 006 007 008 010 011 012 013 014 016 022
14.6 16 002 003 005 005-010.501.XP.MI 005-010.501.XP.MI.SA 006 007 008 010 014 016 018 022 026 030 038
14.7 16 002 005 006 007 008 010 014 016 018 019-024.501.XP.MI 019-024.501.XP.MI.SA 020 022 026 030 036
14.8 14 002 008 010 012 014 016 018 020 022 024 025 026 027 028
Chapter 15: Vector Analysis
15.1 14 004 005 006 008 012 020 022 027 028 029 030 031 032 033
15.2 16 003 004 005 006 007 008 009 010 011 012 013 014 015 016 501.XP.MI 501.XP.MI.SA
15.3 18 001-022.501.XP.MI 001-022.501.XP.MI.SA 004 006 008 010 012 014 016 018 020 022 024 026 028 031-036.501.XP.MI 031-036.501.XP.MI.SA 032
15.4 20 004 006 008 010 012 014 016 018 020 021-022.501.XP.MI 021-022.501.XP.MI.SA 022 024 025-032.501.XP.MI 025-032.501.XP.MI.SA 026 028 030 033-036.501.XP.MI 033-036.501.XP.MI.SA
15.5 16 004 005-016.501.XP.MI 005-016.501.XP.MI.SA 006 008 010 012 014 016 018 020 022 026 028 034 036
15.6 14 004 006 008 016 018 020 022 024 028 030 032 034 036 038
15.7 14 004 006 008 010 014 016 018 020 022 024 026 028 030 034
15.8 14 005 005-018.501.XP.MI 005-018.501.XP.MI.SA 006 007 008 010 012 013 014 015 016 017 018
15.9 12 006 008 009 010 012 014 016 018 020 022 024 026
 Chapter 16
16 0  
Total 2854 (1)  

WebAssign® is a registered service mark of North Carolina State University under license to Advanced Instructional Systems, Inc.

Copyright Information © 1997–2003 North Carolina State University. Portions © 2003– Advanced Instructional Systems, Inc.

Various trademarks held by their respective owners.

Main Office: 1791 Varsity Drive, Suite 200, Raleigh, NC 27606 | Tel (919) 829-8181 | Fax (919) 829-1516