# Linear Algebra with Applications (alternate edition) 8th edition

Gareth Williams
Publisher: Jones and Bartlett Learning

## eBook

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter 1: Systems of Linear Equations
• 1.1: Matrices and Systems of Linear Equations
• 1.2: Gauss-Jordan Elimination
• 1.3: Curve Fitting, Electrical Networks, and Traffic Flow
• 1: Review Exercises (36)
• 1: Test Bank (27)

• Chapter 2: Matrices
• 2.1: Addition, Scalar Multiplication, and Multiplication of Matrices
• 2.2: Properties of Matrix Operations
• 2.3: Symmetric Matrices and Seriation in Archaeology
• 2.4: The Inverse of a Matrix and Cryptography
• 2.5: The Leontief Input-Output Model in Economics
• 2.6: Markov Chains, Population Movements, and Genetics
• 2.7: A Communication Model and Group Relationships in Sociology
• 2: Review Exercises (42)
• 2: Test Bank (40)

• Chapter 3: Determinants
• 3.1: Introduction to Determinants
• 3.2: Properties of Determinants
• 3.3: Determinants, Matrix Inverses, and Systems of Linear Equations
• 3: Review Exercises (35)
• 3: Test Bank (31)

• Chapter 4: General Vector Spaces
• 4.1: The Vector Space ℜn
• 4.2: Dot Product, Norm, Angle, and Distance
• 4.3: General Vector Spaces
• 4.4: Subspaces
• 4.5: Linear Combinations
• 4.6: Linear Dependence and Independence
• 4.7: Basis and Dimension
• 4.8: Rank of a Matrix
• 4.9: Orthonormal Vectors, Projections, and Gram-Schmidt Process
• 4.10: Orthogonal Complement
• 4: Review Exercises (113)
• 4: Test Bank (42)

• Chapter 5: Eigenvalues and Eigenvectors
• 5.1: Eigenvalues, Eigenvectors, QR Factorization
• 5.2: Google, Demography, Weather Prediction, and Leslie Matrix Models
• 5.3: Diagonalization of Matrices
• 5.4: Quadratic Forms, Difference Equations, and Normal Modes
• 5: Review Exercises (28)
• 5: Test Bank (32)

• Chapter 6: Linear Transformations
• 6.1: Matrix Transformations, Rotations, and Dilations
• 6.2: Linear Transformations, Graphics, and Fractals
• 6.3: Kernel, Range, and the Rank/Nullity Theorem
• 6.4: One-to-One Transformations and Inverse Transformations
• 6.5: Transformations and Systems of Linear Equations
• 6.6: Coordinate Vectors
• 6.7: Matrix Representations of Linear Transformations
• 6: Review Exercises (46)
• 6: Test Bank (40)

• Chapter 7: Inner Product Spaces
• 7.1: Inner Product Spaces
• 7.2: Non-Euclidean Geometry and Special Relativity
• 7.3: Approximation of Functions and Coding Theory
• 7.4: Least Squares Solutions
• 7: Review Exercises (18)
• 7: Test Bank (32)

• Chapter 8: Numerical Methods
• 8.1: Gaussian Elimination
• 8.2: The Method of LU Decomposition
• 8.3: Practical Difficulties in Solving Systems of Equations
• 8.4: Iterative Methods for Solving Systems of Linear Equations
• 8.5: Eigenvalues by Iteration and Connectivity of Networks
• 8.6: Singular Value Decomposition
• 8: Review Exercises (17)
• 8: Test Bank (27)

• Chapter 9: Linear Programming
• 9.1: A Geometrical Introduction to Linear Programming
• 9.2: The Simplex Method
• 9.3: Geometrical Explanation of the Simplex Method
• 9: Review Exercises (8)
• 9: Test Bank (20)

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

TB - Test Bank

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter 1: Systems of Linear Equations
1.R 36 001 002 003 004 005 006 007 008 011 012 013 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP
1.TB 27 001 002 003 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 028 031
Chapter 2: Matrices
2.R 42 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 019 020 021 022 023 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP
2.TB 40 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040
Chapter 3: Determinants
3.R 35 001 002 003 004 005 006 007 008 009 010 011 012 013 014 016 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP
3.TB 31 001 002 003 004 005 006 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032
Chapter 4: General Vector Spaces
4.R 113 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP 521.XP 522.XP 523.XP 524.XP 525.XP 526.XP 527.XP 528.XP 529.XP 530.XP 531.XP 532.XP 533.XP 534.XP 535.XP 536.XP 537.XP 538.XP 539.XP 540.XP 541.XP 542.XP 543.XP 544.XP 545.XP 546.XP 547.XP 548.XP 549.XP 550.XP 551.XP 552.XP 553.XP 554.XP 555.XP 556.XP 557.XP 558.XP 559.XP 560.XP 561.XP 562.XP 563.XP 564.XP 565.XP
4.TB 42 003 004 005 010 012 018 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 047 048 049 050 052 053 054 055 058 060 061 062
Chapter 5: Eigenvalues and Eigenvectors
5.R 28 001 002 003 004 005 006 007 008 009 010 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP
5.TB 32 001 002 003 005 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 030 032 033 034 035 036 037 039 040
Chapter 6: Linear Transformations
6.R 46 001 002 003 004 005 006 007 008 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP 509.XP 510.XP 511.XP 512.XP 513.XP 514.XP 515.XP 516.XP 517.XP 518.XP 519.XP 520.XP
6.TB 40 002 003 004 005 006 007 010 011 014 015 016 017 018 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 042 043 044 045 048 049 050 051
Chapter 7: Inner Product Spaces
7.R 18 001 002 003 004 005 006 007 008 009 010 501.XP 502.XP 503.XP 504.XP 505.XP 506.XP 507.XP 508.XP
7.TB 32 001 002 003 004 005 006 007 009 010 011 012 013 015 017 018 019 020 021 022 023 024 025 026 027 028 029 031 032 033 034 035 036
Chapter 8: Numerical Methods
8.R 17 001 002 003 004 005 006 007 008 009 010 011 012 501.XP 502.XP 503.XP 504.XP 505.XP
8.TB 27 001 002 003 009 011 014 016 017 018 019 020 021 022 023 024 025 026 027 028 029 031 032 034 035 036 037 039
Chapter 9: Linear Programming
9.R 8 001 002 003 004 005 006 007 008
9.TB 20 001 002 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026
Total 634