# Introduction to Statistics and Data Analysis 6th edition

Roxy Peck, Tom Short, and Chris Olsen
Publisher: Cengage Learning

## Course Packs

Save time with ready-to-use assignments built by subject matter experts specifically for this textbook. You can customize and schedule any of the assignments you want to use.

## Textbook Resources

Additional instructional and learning resources are available with the textbook, and might include testbanks, slide presentations, online simulations, videos, and documents.

• College Success Toolkit
• Math Mindset
• Peck Introduction to Statistics and Data Analysis 6e with SALT - Updated March 2021

Access is contingent on use of this textbook in the instructor's classroom.

• Chapter 1: The Role of Statistics and the Data Analysis Process
• 1: Concept Explorations (2)
• 1: SALT Tutorial - Supporting Section 1.4
• 1.1: Why Study Statistics?
• 1.2: The Nature and Role of Variability
• 1.3: Statistics and the Data Analysis Process (10)
• 1.4: Types of Data and Some Simple Graphical Displays (22)
• 1: Chapter Review (5)
• 1: Active Examples (2)
• 1: Extra Problems (4)
• 1: Select Your Scenario (beta) - Supporting Section 1.4
• 1: JMP Simulations (4)
• 1: Concept Questions (16)
• 1: Test Bank (62)

• Chapter 2: Collecting Data Sensibly
• 2: Concept Explorations (3)
• 2.1: Statistical Studies: Observation and Experimentation (11)
• 2.2: Sampling (20)
• 2.3: Simple Comparative Experiments (15)
• 2.4: More on Experimental Design (11)
• 2.5: Interpreting and Communicating the Results of Statistical Analyses (5)
• 2: Chapter Review (9)
• 2: Online Exercises (5)
• 2: Active Examples
• 2: Extra Problems (9)
• 2: Concept Questions (40)
• 2: Labs (6)
• 2: Test Bank (43)

• Chapter 3: Graphical Methods for Describing Data
• 3: Concept Explorations (2)
• 3: SALT Tutorial - Supporting Sections 3.1, 3.3, and 3.4 (1)
• 3.1: Displaying Categorical Data: Comparative Bar Charts and Pie Charts (13)
• 3.2: Displaying Numerical Data: Stem-and-Leaf Displays (8)
• 3.3: Displaying Numerical Data: Frequency Distributions and Histograms (16)
• 3.4: Displaying Bivariate Numerical Data (7)
• 3.5: Interpreting and Communicating the Results of Statistical Analyses (5)
• 3: Chapter Review (12)
• 3: Active Examples (2)
• 3: Cumulative Review Exercises (15)
• 3: Extra Problems (23)
• 3: Select Your Scenario (beta) - Supporting Sections 3.1, 3.3, and 3.4 (1)
• 3: JMP Simulations (8)
• 3: Concept Questions (16)
• 3: Labs (5)
• 3: Test Bank (55)

• Chapter 4: Numerical Methods for Describing Data
• 4: Concept Explorations (4)
• 4: SALT Tutorial - Supporting Sections 4.3 and 4.4 (2)
• 4.1: Describing the Center of a Data Set (15)
• 4.2: Describing Variability in a Data Set (20)
• 4.3: Summarizing a Data Set: Boxplots (8)
• 4.4: Interpreting Center and Variability: Chebyshev's Rule, the Empirical Rule, and z Scores (21)
• 4.5: Interpreting and Communicating the Results of Statistical Analyses (2)
• 4: Chapter Review (9)
• 4: Active Examples (4)
• 4: Extra Problems (20)
• 4: Select Your Scenario (beta) - Supporting Sections 4.3 and 4.4 (2)
• 4: JMP Simulations (14)
• 4: Concept Questions (19)
• 4: Labs (6)
• 4: Test Bank (280)

• Chapter 5: Summarizing Bivariate Data
• 5: Concept Explorations (2)
• 5: SALT Tutorial - Supporting Sections 5.1, 5.2, and 5.3
• 5.1: Correlation (16)
• 5.2: Linear Regression: Fitting a Line to Bivariate Data (20)
• 5.3: Assessing the Fit of a Line (20)
• 5.4: Nonlinear Relationships and Transformations (9)
• 5.5: Interpreting and Communicating the Results of Statistical Analyses (4)
• 5: Chapter Review (11)
• 5: Online Exercises (6)
• 5: Active Examples
• 5: Cumulative Review Exercises (14)
• 5: Extra Problems (19)
• 5: Select Your Scenario (beta) - Supporting Sections 5.1, 5.2, and 5.3
• 5: JMP Simulations (10)
• 5: Concept Questions (14)
• 5: Labs (6)
• 5: Test Bank (117)

• Chapter 6: Probability
• 6: Concept Explorations (2)
• 6.1: Chance Experiments and Events (15)
• 6.2: Definition of Probability
• 6.3: Basic Properties of Probability (24)
• 6.4: Conditional Probability (17)
• 6.5: Independence (18)
• 6.6: Some General Probability Rules (24)
• 6.7: Estimating Probabilities Empirically and Using Simulation (13)
• 6: Chapter Review (19)
• 6: Active Examples (6)
• 6: Extra Problems (16)
• 6: Concept Questions (24)
• 6: Labs (5)
• 6: Test Bank (9)

• Chapter 7: Random Variables and Probability Distributions
• 7: Concept Explorations (3)
• 7: SALT Tutorial - Supporting Sections 7.5 and 7.6 (1)
• 7.1: Random Variables (7)
• 7.2: Probability Distributions for Discrete Random Variables (17)
• 7.3: Probability Distributions for Continuous Random Variables (13)
• 7.4: Mean and Standard Deviation of a Random Variable (18)
• 7.5: Binomial and Geometric Distributions (22)
• 7.6: Normal Distributions (31)
• 7.7: Checking for Normality and Normalizing Transformations (11)
• 7.8: Using the Normal Distribution to Approximate a Discrete Distribution (Optional) (15)
• 7: Chapter Review (22)
• 7: Active Examples (9)
• 7: Cumulative Review Exercises (20)
• 7: Extra Problems (16)
• 7: Select Your Scenario (beta) - Supporting Sections 7.5 and 7.6 (1)
• 7: JMP Simulations (5)
• 7: Concept Questions (46)
• 7: Labs (10)
• 7: Test Bank (236)

• Chapter 8: Sampling Variability and Sampling Distributions
• 8: Concept Explorations (2)
• 8.1: Statistics and Sampling Variability (8)
• 8.2: The Sampling Distribution of a Sample Mean (16)
• 8.3: The Sampling Distribution of a Sample Proportion (9)
• 8: Chapter Review (6)
• 8: Active Examples (3)
• 8: Extra Problems (1)
• 8: Concept Questions (8)
• 8: Labs (6)
• 8: Test Bank (32)

• Chapter 9: Estimation Using a Single Sample
• 9: Concept Explorations (5)
• 9: SALT Tutorial - Supporting Sections 9.1, 9.2, and 9.3 (1)
• 9.1: Point Estimation (10)
• 9.2: Large-Sample Confidence Interval for a Population Proportion (26)
• 9.3: Confidence Interval for a Population Mean (17)
• 9.4: Interpreting and Communicating the Results of Statistical Analyses (3)
• 9.5: Bootstrap Confidence Intervals for a Population Proportion (Optional) (7)
• 9.6: Bootstrap Confidence Intervals for a Population Mean (Optional) (6)
• 9: Chapter Review (11)
• 9: Active Examples (6)
• 9: Extra Problems (28)
• 9: Select Your Scenario (beta) - Supporting Sections 9.1, 9.2, and 9.3 (1)
• 9: JMP Simulations (9)
• 9: Concept Questions (16)
• 9: Labs (6)
• 9: Test Bank (48)

• Chapter 10: Hypothesis Testing Using a Single Sample
• 10: Concept Explorations (4)
• 10: SALT Tutorial - Supporting Sections 10.3 and 10.4 (2)
• 10.1: Hypotheses and Test Procedures (10)
• 10.2: Errors in Hypotheses Testing (11)
• 10.3: Large-Sample Hypothesis Tests for a Population Proportion (22)
• 10.4: Hypothesis Tests for a Population Mean (23)
• 10.5: Power and Probability of Type II Error (11)
• 10.6: Interpreting and Communicating the Results of Statistical Analyses (2)
• 10.7: Randomization Test and Exact Binomial Test for a Population Proportion (Optional) (5)
• 10.8: Randomization Test for a Population Mean (Optional) (5)
• 10: Chapter Review (16)
• 10: Active Examples (8)
• 10: Cumulative Review Exercises (15)
• 10: Extra Problems (23)
• 10: Select Your Scenario (beta) - Supporting Sections 10.3 and 10.4 (2)
• 10: JMP Simulations (13)
• 10: Concept Questions (22)
• 10: Labs (6)
• 10: Test Bank (146)

• Chapter 11: Comparing Two Populations or Treatments
• 11: Concept Explorations (2)
• 11: SALT Tutorial - Supporting Sections 11.1, 11.2, and 11.3 (2)
• 11.1: Inferences Concerning the Difference Between Two Population or Treatment Means Using Independent Samples (22)
• 11.2: Inferences Concerning the Difference Between Two Population or Treatment Means Using Paired Samples (20)
• 11.3: Large-Sample Inferences Concerning the Difference Between Two Population or Treatment Proportions (20)
• 11.4: Interpreting and Communicating the Results of Statistical Analyses (4)
• 11.5: Simulation-Based Inference for Two Means (Optional) (8)
• 11.6: Simulation-Based Inference for Two Proportions (Optional) (7)
• 11: Chapter Review (13)
• 11: Active Examples (4)
• 11: Extra Problems (34)
• 11: Select Your Scenario (beta) - Supporting Sections 11.1, 11.2, and 11.3 (2)
• 11: JMP Simulations (24)
• 11: Concept Questions (22)
• 11: Labs (6)
• 11: Test Bank (107)

• Chapter 12: The Analysis of Categorical Data and Goodness-of-Fit Tests
• 12: Concept Explorations (2)
• 12.1: Chi-Square Tests for Univariate Data (14)
• 12.2: Tests for Homogeneity and Independence in a Two-way Table (17)
• 12.3: Interpreting and Communicating the Results of Statistical Analyses (3)
• 12: Chapter Review (6)
• 12: Active Examples (7)
• 12: Extra Problems (18)
• 12: JMP Simulations (6)
• 12: Concept Questions (10)
• 12: Labs (6)
• 12: Test Bank (72)

• Chapter 13: Simple Linear Regression and Correlation: Inferential Methods
• 13: Concept Explorations (2)
• 13: SALT Tutorial
• 13.1: Simple Linear Regression Model (16)
• 13.2: Inferences About the Slope of the Population Regression Line (20)
• 13.3: Checking Model Adequacy (5)
• 13.4: Inferences Based on the Estimated Regression Line (12)
• 13.5: Inferences About the Population Correlation Coefficient (8)
• 13.6: Interpreting and Communicating the Results of Statistical Analyses (1)
• 13: Chapter Review (12)
• 13: Active Examples (3)
• 13: Cumulative Review Exercises (16)
• 13: Extra Problems (3)
• 13: Select Your Scenario (beta)
• 13: JMP Simulations (6)
• 13: Concept Questions (10)
• 13: Labs (6)
• 13: Test Bank (60)

• Chapter 14: Multiple Regression Analysis
• 14: Concept Explorations (2)
• 14.1: Multiple Regression Models (15)
• 14.2: Fitting a Model and Assessing Its Utility (20)
• 14.3: Inferences Based on an Estimated Model (15)
• 14.4: Other Issues in Multiple Regression (11)
• 14.5: Interpreting and Communicating the Results of Statistical Analyses
• 14: Chapter Review (10)
• 14: Active Examples (5)
• 14: Extra Problems (7)
• 14: Concept Questions (8)
• 14: Labs (5)
• 14: Test Bank (33)

• Chapter 15: Analysis of Variance
• 15: Concept Explorations (2)
• 15.1: Single-Factor ANOVA and the F Test (15)
• 15.2: Multiple Comparisons (9)
• 15.3: The F Test for a Randomized Block Experiment (5)
• 15.4: Two-Factor ANOVA (8)
• 15.5: Interpreting and Communicating the Results of Statistical Analyses
• 15: Chapter Review (11)
• 15: Active Examples (3)
• 15: Extra Problems (3)
• 15: JMP Simulations (6)
• 15: Concept Questions (10)
• 15: Labs (5)
• 15: Test Bank (147)

• Chapter 16: Nonparametric (Distribution-Free) Statistical Methods
• 16: Concept Explorations (2)
• 16.1: Distribution-Free Procedures for Inferences About a Difference Between Two Population or Treatment Means Using Independent Samples (8)
• 16.2: Distribution-Free Procedures for Inferences About a Difference Between Two Population or Treatment Means Using Paired Samples (13)
• 16.3: Distribution-Free ANOVA (9)
• 16: Chapter Review
• 16: Active Examples
• 16: Extra Problems
• 16: Concept Questions (4)
• 16: Test Bank (63)

• Chapter PJT: Project
• PJT.1: Project (4)

Introduction to Statistics and Data Analysis, 6th Edition, by Peck, Short, and Olsen lowers the reading level from the previous edition and significantly increases homework scaffolding for difficulty level. In order to get students thinking statistically, this text stresses interpretation and communication of statistical information through hands-on, activity based learning using real data. Written in compliance with the GAISE college report and employing techniques based on modern research into student learning, this text places emphasis on how concepts apply to students and the world around them, then gets into methods using data analysis tools or hand-calculations where necessary. This 6th Edition contains new sections on randomization-based inference: bootstrap methods for simulation-based confidence intervals and randomization tests of hypotheses. The WebAssign component for this text engages students with an interactive eBook and several other resources.

#### New for Spring '21

• Additional SALT Tutorial Questions added to help your students understand how to use SALT in their WebAssign assignments. Students are provided with scaffolded instruction not only on the content, but how to use SALT to compute and analyze data.
• Additional Select Your Scenario Questions were added. Select Your Scenario problems provide students with 3 different contexts to choose from. They select the scenario most relevant to them, and then solve the problem. Regardless of which scenario the student chooses, they will be required to answer questions demonstrating knowledge of a learning objective, making them the perfect questions to assign toward the end of a chapter.
• New Concept Videos were added. Concept Videos are 7-10 minutes in length and are designed to help students with big picture understanding of statistics.
• New Concept Video Questions were added providing students with a concept video along with two to three comprehension questions.
• Questions updated with SALT (Statistical Analysis and Learning Tool), including questions with frequency data and questions requiring the implementation of a Chi-Square test.

#### New for Fall '20 / Spring '21 Academic Year

• SALT (Statistical Analysis and Learning Tool) is a data analysis tool for introductory level statistics courses that helps students gain improved conceptual understanding of statistics through visualization and analysis of datasets. SALT can be used on its own or as a tool to answer SALT-enabled questions in WebAssign.
• #### Instructor Introduction - Statistical Analysis and Learning Tool (SALT) | WebAssign

The Statistical Analysis and Learning Tool (SALT) is designed by statisticians, for statisticians, to help you get introductory students deeply engaged in da...

### Instructor Product Features

• Course Packs with ready-to-use assignments were built by subject matter experts specifically for this textbook. They are designed to save you time and can be easily customized to meet your teaching goals. Course Packs include Stats in Practice Video Questions, Labs, and Project Milestones.
• Test Banks: A pool of over 1,000 assessments for use in quizzes, tests, and exams.
• Instructor Resources include Instructional Lecture Videos, hosted by Dana Mosely. These topic-specific videos provide explanations of key concepts, examples, and applications in a lecture-based format. Lecture PowerPoint slides are also available.
• Use the Textbook Edition Upgrade Tool to automatically update all of your assignments from the previous edition to corresponding questions in this textbook.

### Student Learning Tools

• Read It links under each question quickly jump to the corresponding section of a complete, interactive eBook that lets students highlight and take notes as they read.
• Watch It links provide step-by-step instruction with short, engaging videos that are ideal for visual learners.
• Master It Tutorials show students how to solve a similar problem in multiple steps by providing direction along with derivation, so the student understands the concepts and reasoning behind the problem solving.
• Active Examples (AE) guide students through the process needed to master a concept and include worked-out solutions.
• Student Resources include Data Analysis Tool Instructions / Tech Guides for the below software. Can be used stand-alone or in conjunction with assessment items (Homework, Labs, or Project Milestones).
• TI-83/84 and TI-Nspire Calculator
• Excel
• JMP
• Minitab
• SPSS
• R

### Questions to Help Students Gain Interest and Assess Conceptual Understanding

• Stats in Practice Video Questions (SIP) show students how Statistics applies in the real world. Short and current news videos introduce each module. Each video is accompanied by multiple-choice and discussion questions, so that students can understand real-world context of what they're learning and stay engaged throughout the whole module.
• Concept Questions (CQ) provide a new way of engaging with non-computational questions. Students enter a free response before they choose a multiple-choice answer, closing the gap between homework and test preparedness.
• Concept Video Questions (CV) provide students with a concept video along with two to three comprehension questions.
• Select Your Scenario (SYS) problems provide students with 3 different contexts to choose from. They select the scenario most relevant to them, and then solve the problem. Regardless of which scenario the student chooses, they will be required to answer questions demonstrating knowledge of a learning objective, making them the perfect questions to assign toward the end of a chapter.

### Tools to Explore Real Data with Technology

• The Statistical Analysis and Learning Tool (SALT) is designed by statisticians, for statisticians, to help you get introductory students deeply engaged in data manipulation, analysis, and interpretation without getting bogged down in complex computations.
• SALT Tutorial Questions (ST): Help your students understand how to use SALT in their WebAssign assignments. Students are provided with scaffolded instruction not only on the content, but how to use SALT to compute and analyze data.
• Simulation Questions by JMP (JMP): Have your students understand concepts by utilizing real data. Students must discover the answer to guided questions by interacting with a simulation of real data in our JMP interactive applet within WebAssign.
• Labs (Lab): Students can perform real statistical analysis in class or online with premade and module-specific Stats Labs. Require students to use the instructor-selected data analysis tool to analyze a real data set, pulling together knowledge learned from that module and previous material to facilitate whole-picture learning.
• Project Milestones (PJT): Allow one place for students to ideate, collaborate, and submit a longer-term project. The four sequential milestones are:
1. Research Design
2. Gather Data
3. Analyze Data
4. Present Results

## Questions Available within WebAssign

Most questions from this textbook are available in WebAssign. The online questions are identical to the textbook questions except for minor wording changes necessary for Web use. Whenever possible, variables, numbers, or words have been randomized so that each student receives a unique version of the question. This list is updated nightly.

##### Question Group Key
AE - Active Example
SIP - Stats in Practice Video Question
JMP - Simulation Question by JMP
CQ - Concept Question
Lab - Lab
PJT - Project Milestone
TB - Test Bank
MI - Master It
MI.SA - Stand Alone Master It
XP - Extra Problem
S - SALT
ST - SALT Tutorial

##### Question Availability Color Key
BLACK questions are available now
GRAY questions are under development

Group Quantity Questions
Chapter PJT: Project
PJT.1 4 001 002 003 004
Chapter 1: The Role of Statistics and the Data Analysis Process
1.AE 2 002 007
1.CE 2 001.CV 002.CV
1.CQ 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
1.E 37 001 002 003 004 005 007 008 009 010 011 012 013 014 015 016 017 018.MI 018.MI.SA 019.S 020 021 022 023 024.MI 024.MI.SA 025 027 028 029.MI 029.MI.SA 030 031 033.S 034 035 036 037.S
1.JMP 4 001 002 003 004
1.TB 62 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062
1.XP 4 001 002 003.S 004
Chapter 2: Collecting Data Sensibly
2.CE 3 001.CV 001.SIP 002.SIP
2.CQ 40 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040
2.E 76 001 002 003 004 005 006 007 008 009 010 011 013 014 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 049 051 052 053 054 055 056 057 058 060 061 062 063 064 065 066 067 068 069 070 072 073 074 075 076 077 078 079 080 082 083 084
2.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
2.TB 43 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043
2.XP 9 001 002 003 004 005 006 007 008 009
Chapter 3: Graphical Methods for Describing Data
3.AE 2 009 011
3.C 15 001 002 003 005 006 007 008 009 010 011 012 013 014 015 016
3.CE 2 001.CV 001.SIP
3.CQ 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
3.E 61 001 002 003 004 005.S 006.QR 007.S 008 009 010.QR 011 013 014 015 016 017 019 020 021 022 023 024.S 025.MI.S 025.MI.SA 026.S 027.S 028.S 029 030 031 032.QR 033 034 035.S 036 037 039.S 040.S 041.S 042 043.S 044 046 047 048 049 050 052 053 054 055 056 058 059 060.MI 060.MI.SA 061 062 063 064 065.S
3.JMP 8 001 002 003 004 005 006 007 008
3.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
3.ST 1 001.S
3.SYS 1 001.S
3.TB 55 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055
3.XP 23 001 002 003 004.S 005.S 006 007.S 008.S 009 010 011 012 013 014 015.S 016 017 018 019 020 021 022 023
Chapter 4: Numerical Methods for Describing Data
4.AE 4 004 014 015 018
4.CE 4 001.CV 001.SIP 002.CV 003.CV
4.CQ 19 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019
4.E 75 001.S 002.S 003.S 004.S 005 007.S 008.S 009.S 010.QR 012 013.QR 014.MI.S 014.MI.SA 015 016 017.MI.S 017.MI.SA 018.S 019.MI.S 019.MI.SA 020.QR.S 021.MI.S 021.MI.SA 022.MI.S 022.MI.SA 023.S 024.S 025.S 027.S 028 030.MI.S 030.MI.SA 031 032.QR.S 033.S 034.MI 034.MI.SA 036.QR.S 037.S 038.S 039.S 040.S 041 042.MI 042.MI.SA 043.MI 043.MI.SA 044 045 046 047 048.MI 048.MI.SA 049.MI 049.MI.SA 050 051 053 054.QR 055 056 057.S 058 058.EP 059 060 061.S 062 064.S 065.S 066.S 067.S 068.S 069.S 070
4.JMP 14 001 002 003 004 005 006 007 008 009 010 011 012 013 014
4.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
4.ST 2 001.S 002.S
4.SYS 2 001.S 002.S
4.TB 280 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
4.XP 20 001.S 002 003.S 004.S 005.S 006.S 007 008.S 009.S 010 011.S 012 013.S 014.S 015.S 016.S 017 018.S 019.S 020
Chapter 5: Summarizing Bivariate Data
5.C 14 002 003 004 005.S 006 007.S 008 009.S 010.S 011.S 012.S 013.S 014 015
5.CE 2 001.CV 001.SIP
5.CQ 14 001 002 003 004 005 006 007 008 009 010 011 012 013 014
5.E 86 001 002.QR 003 004 005.QR 008.S 009.MI.S 009.MI.SA 010 011 012.S 013.S 014.MI 014.MI.SA 015 016 017 018.S 019.MI.S 019.MI.SA 020.MI.S 020.MI.SA.S 021 022 023 024.S 025.S 026.S 027.S 028 029 030.S 031 032 033 034.S 035.QR.S 036.MI.S 036.MI.SA 037.S 038 039.S 040.S 041 042.MI.S 042.MI.SA 043.S 044 045.S 047 048.S 049 050.S 051 052 053 054.S 055 056.S 057 058.S 059.S 060.S 061.S 063.S 064 065 066.QR 067 068.S 069.S 070.S 071 072.S 073.S 074.S 075.S 077 078 079 080.S 081.S 083.S 084.S 085.S 086.S
5.JMP 10 001 002 003 004 005 006 007 008 009 010
5.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
5.TB 117 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
5.XP 19 001.S 002.S 003 004 005 006.S 007.S 008 009.S 010.S 011 012 013.S 014.S 015 016.S 017.S 018.S 019.S
Chapter 6: Probability
6.AE 6 010 014 017 024 027 030
6.CE 2 001.CV 001.SIP
6.CQ 24 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024
6.E 130 001 002 003 004 005 006 007 008 009 010 011 012 013 014 016 017 018 019 020 021 022 023 024 025 026 027 028.MI 028.MI.SA 030 031.MI 031.MI.SA 032.MI 032.MI.SA 033 034 035 036.MI 036.MI.SA 037 038 039.MI 039.MI.SA 040 041 042 043 044 046 047.MI 047.MI.SA 048 049 050.MI 050.MI.SA 051 052 053 054 055 056 057 058 059.MI 059.MI.SA 060.MI 060.MI.SA 061 062 064 065.MI 065.MI.SA 066 067 068 069.MI 069.MI.SA 070.MI 070.MI.SA 071.QR 072 073 074.MI 074.MI.SA 075.MI 075.MI.SA 076 077 078 079 080 081 082 083 084.MI 084.MI.SA 085 086 087 088.MI 088.MI.SA 089 090 091.MI 091.MI.SA 092 093 094 095 097 098 099 100 101 102 103 104 105 106 107 108 109 110 113 114 115 116 117 118 119 120
6.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
6.TB 9 001 002 003 004 005 006 007 008 009
6.XP 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
Chapter 7: Random Variables and Probability Distributions
7.AE 9 008 009 013 016 022 023.S 025.S 029 035
7.C 20 001 002.S 003 004 005.S 006 007 009 010 011 012 013 014 015 016 018.MI.S 018.MI.SA 019.S 020.S 021.S
7.CE 3 001.CV 001.SIP 002.CV
7.CQ 46 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046
7.E 156 001 002 003 004 005 006 007 008 009 010.MI 010.MI.SA 011 012.QR 013.MI 013.MI.SA 014 015 016.MI 016.MI.SA 017 018 019 020 021 022 023 024.MI 024.MI.SA 025.QR 026 027.MI 027.MI.SA 028 029 030.QR 031 032 033 034.MI 034.MI.SA 035 036.MI 036.MI.SA 037 038 039 040.QR 041 042 043 044 046.QR 047 049 050 051.QR.S 052.MI.S 052.MI.SA 053.MI.S 053.MI.SA 054.S 055.S 056.S 057.S 058.S 060.S 061 062.MI.S 062.MI.SA.S 063.S 064 065.S 066.S 067 068.QR 069.MI 069.MI.SA 070.MI.S 070.MI.SA 071.S 072.MI.S 072.MI.SA 073.S 074.S 075.S 076.QR.S 077.S 078.QR.S 079.MI.S 079.MI.SA 080.S 081.S 082.S 083.MI.S 083.MI.SA 084.S 085.S 086 087.QR.S 088.QR.S 090.QR.S 091.S 092.MI.S 092.MI.SA 093.S 094.S 095.S 096.S 097.S 098.S 099.S 100.S 101.S 102 103.S 104.S 105.S 106 107 109.MI.S 109.MI.SA 110.S 111.MI.S 111.MI.SA 112.S 113.S 114.S 115 116.QR.S 117.S 118.MI.S 118.MI.SA 119.QR.S 120.S 122.MI.S 122.MI.SA 123.MI 123.MI.SA 124 125 126 127.S 128.S 129.S 130 131.S 132.S 133.S 134.S 135 136 137 138.S 139.S 140.S 141
7.JMP 5 001 002 003 004 005
7.Lab 10 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 002.Excel 002.JMP 002.Minitab 002.R 002.SPSS
7.ST 1 001.S
7.SYS 1 001.S
7.TB 236 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
7.XP 16 001.S 002 003.MI 003.MI.SA 004 005.S 006.S 007 008.MI.S 008.MI.SA 009.S 010.S 011 012.S 013 014
Chapter 8: Sampling Variability and Sampling Distributions
8.AE 3 005.S 006.S 009.S
8.CE 2 001.CV 001.SIP
8.CQ 8 001 002 003 004 005 006 007 008
8.E 39 001 002 003 004 005 006 007 009 010.MI 010.MI.SA 011 012 013 013.MI.S 013.MI.SA.S 014 015 016.MI.S 016.MI.SA 017.S 018.S 019.S 021.S 022.S 023 024 025 026 027.QR 028 030.S 031.MI.S 031.MI.SA 032.S 033.S 034.S 035.S 036.S 037.S
8.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
8.TB 32 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032
8.XP 1 001.S
Chapter 9: Estimation Using a Single Sample
9.AE 6 005.S 006.S 007 009.S 010 011.S
9.CE 5 001.CV 001.SIP 002.CV 003.CV 501.XP.SIP
9.CQ 16 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016
9.E 80 001 002 003 005 006 007.MI.S 007.MI.SA 008.QR.S 009.MI.S 009.MI.SA 010 011 012.S 013 014 015.QR 016.S 017 018.MI.S 018.MI.SA.S 019.QR.S 020.S 021.S 023.S 024.MI.S 024.MI.SA.S 025.S 026.S 027.S 029 030.S 031.QR.S 033.S 034.MI.S 034.MI.SA 035.S 036.S 037.S 038 039.QR 041.S 042.S 043.MI.S 043.MI.SA 044.S 045 048.S 049.S 050.S 051 052.S 053.S 054.S 055 056 057.S 058 059.QR 060 061 063 064 065 066.MI 066.MI.SA 067 068 069 071 073.S 074.S 075.S 076.S 077.S 078.S 079.MI.S 079.MI.SA 080 081 082
9.JMP 9 001 002 003 004 005 006 007 008 009
9.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
9.ST 1 001.S
9.SYS 1 001.S
9.TB 48 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048
9.XP 28 001 002.S 003.S 004.S 005.S 006.S 007.S 008.S 009.S 010.S 011.S 012 013 014 015.S 016.S 017.MI.S 017.MI.SA 018.S 019 020.S 021.S 022 023.S 024.S 025.S 026.S 027.S
Chapter 10: Hypothesis Testing Using a Single Sample
10.AE 8 008 009 010.S 011 013 014 015.S 017
10.C 15 001 003.S 004.S 005.S 006.MI.S 006.MI.SA 007 008.S 009.S 010.S 011.S 012.S 013.S 014.S 015.S
10.CE 4 001.CV 001.SIP 002.CV 003.CV
10.CQ 22 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022
10.E 105 001 002 003 004 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024.MI 024.MI.SA 025 026 027.MI.S 027.MI.SA.S 028 030.MI.S 030.MI.SA.S 031.MI.S 031.MI.SA.S 032 033.S 034 035 037 038 039.QR.S 040.S 041.S 042 043.S 044.S 045.MI.S 045.MI.SA.S 046.S 047.S 048.S 050.S 052.MI.S 052.MI.SA.S 053.MI.S 053.MI.SA.S 054.MI.S 054.MI.SA.S 055.S 056.S 057 058.S 059.S 060 061.MI.S 061.MI.SA.S 062.S 063 064.S 065.S 066.S 067.MI.S 067.MI.SA.S 068.MI.S 068.MI.SA.S 069 070 071 072 073.QR.S 074 075 077 078 079.S 080 081 082 083 085 086.S 087.S 088.S 089.S 090.S 091.S 093.MI.S 093.MI.SA.S 094.S 095.S 096.S 097.S 098.S 099.MI.S 099.MI.SA.S 100.S
10.JMP 13 001 002 003 004 005 006 007 008 009 010 011 012 013
10.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
10.ST 2 001.S 002.S
10.SYS 2 001.S 002.S
10.TB 146 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
10.XP 23 001.S 002 003 004 005 006 007 008.S 009.S 010.S 011.S 012.S 013.S 014.S 015.S 016.S 017.S 018.S 019.S 020.S 021.S 022.S 023.S
Chapter 11: Comparing Two Populations or Treatments
11.AE 4 003 006 007 008
11.CE 2 001.CV 001.SIP
11.CQ 22 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022
11.E 94 001.MI 001.MI.SA 002 003.MI.S 003.MI.SA.S 004.S 005.QR.S 006.S 007.S 008 009.S 010.S 011.QR.S 012.MI.S 012.MI.SA.S 013.S 014.S 015.S 016.S 018.S 020.S 021.S 022 023.MI.S 023.MI.SA.S 024.S 025.S 027.S 029.S 030.S 031.S 032.MI.S 032.MI.SA.S 033.MI.S 033.MI.SA.S 034.S 035.S 036 037.S 038.S 039.S 040.S 041.S 042.S 043.S 045 046.S 047.S 048 049.MI.S 049.MI.SA 050.S 051.S 052.S 053.S 054.MI.S 054.MI.SA 055.QR.S 056.S 057.S 059.MI.S 059.MI.SA 060.S 061 062.MI.S 062.MI.SA.S 063 064 066 067 068 069 070.MI 070.MI.SA 071 072 073 074 075 076 077.S 079.S 080.S 081.S 082.S 083 084.MI.S 084.MI.SA.S 086.S 087.S 088.S 089.S 090.S 091.S
11.JMP 24 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024
11.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
11.ST 2 001.S 002.S
11.SYS 2 001.S 002.S
11.TB 107 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109
11.XP 34 001.S 002 003.S 004.S 005.S 006.S 007.S 008.S 009.S 010.S 011 012.S 013.S 014 015.S 016.S 017.S 018.S 019.S 020.S 021.S 022.S 023.S 024.S 025 026.S 027.S 028.S 029.S 030.S 031.S 032.S 033 034.S
Chapter 12: The Analysis of Categorical Data and Goodness-of-Fit Tests
12.AE 7 001 002 004 005 006 007 008
12.CE 2 001.CV 001.SIP
12.CQ 10 001 002 003 004 005 006 007 008 009 010
12.E 40 001.S 002.S 003.S 004.S 005.S 007.MI.S 007.MI.SA.S 008.QR.S 009.MI.S 009.MI.SA.S 010.S 011 012.S 013.S 014 015.S 016.QR.S 017.MI.S 017.MI.SA 018.QR.S 019.S 020.MI.S 020.MI.SA 021.S 023.MI.S 023.MI.SA.S 024.QR.S 025.S 026.S 027.QR.S 028.S 029 030.S 031 032.S 033.S 034.MI.S 034.MI.SA.S 035.S 036.S
12.JMP 6 001 002 003 004 005 006
12.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
12.TB 72 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072
12.XP 18 001.S 002.S 003.S 004.MI.S 004.MI.SA.S 005.S 006.S 007.S 008.S 009.S 010.S 011.S 012.S 013.S 014.S 015.S 016.S 017.S
Chapter 13: Simple Linear Regression and Correlation: Inferential Methods
13.AE 3 002 003 005
13.C 16 001 002.S 004 005.S 007 008.S 009.S 010.S 011.S 012.S 013.S 014.S 015.S 016.S 017.S 018.S
13.CE 2 001.CV 001.SIP
13.CQ 10 001 002 003 004 005 006 007 008 009 010
13.E 74 001 002 003 004.MI.S 004.MI.SA 005 006 007.MI.S 007.MI.SA 008 009.MI 009.MI.SA 010.QR.S 011.S 012 013.S 014 015.MI.S 015.MI.SA 016 017.S 018.MI.S 018.MI.SA 019.S 020 021 022.MI.S 022.MI.SA 023.S 024.S 026 027.MI.S 027.MI.SA.S 028.S 029 030.S 031 032.S 034 035 036.S 037 038 039 040.S 042.MI 042.MI.SA 043.S 044 045.MI 045.MI.SA 046 047.S 048 049 050.MI 050.MI.SA 051.S 053.S 054.S 055.S 056 057.S 058 059.S 061.S 062.S 063.S 064.S 065 066.S 067 068 069
13.JMP 6 001 002 003 004 005 006
13.Lab 6 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS 001.TI
13.TB 60 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060
13.XP 3 001.S 002 003.S
Chapter 14: Multiple Regression Analysis
14.AE 5 002 007 008 009 010
14.CE 2 001.CV 001.SIP
14.CQ 8 001 002 003 004 005 006 007 008
14.E 71 001 002 003 004.S 005.QR 006.MI 006.MI.SA 007 008 009 010 011 013 014 015 017.S 018.S 019.MI.S 019.MI.SA 020.S 021.S 022.S 023.MI 023.MI.SA 024.QR 025.S 026.S 027.S 028.S 029.S 030.S 031.S 032.S 034.S 035.S 036 037.S 038.S 039.MI 039.MI.SA 041.S 042.S 043.S 044.S 045.S 046.S 047.S 048.S 049.S 050.S 052 053 054 055.S 056 057.S 058 059.QR 060 061 062 063.S 064.S 066.S 067 068.S 069 070.S 071 072.S 073.S
14.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
14.TB 33 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033
14.XP 7 001 002 003 004 005 006.S 007.S
Chapter 15: Analysis of Variance
15.AE 3 003 004 005
15.CE 2 001.CV 001.SIP
15.CQ 10 001 002 003 004 005 006 007 008 009 010
15.E 48 001.QR.S 002.QR.S 003.QR.S 004.MI.S 004.MI.SA 005.MI.S 005.MI.SA 006.S 007.S 009.MI.S 009.MI.SA 010.S 011.S 012.S 013.S 014 015 016 018.QR.S 019.MI 019.MI.SA 020 021.S 022.S 024.S 025.QR 026.S 027.S 028.S 029 030.S 031 032.QR 033 034.QR 036.S 037.S 039.S 040 041.S 042.S 043.S 044.S 045.S 046 047.S 048.S 049.S
15.JMP 6 001 002 003 004 005 006
15.Lab 5 001.Excel 001.JMP 001.Minitab 001.R 001.SPSS
15.TB 147 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
15.XP 3 001.S 002.S 003
Chapter 16: Nonparametric (Distribution-Free) Statistical Methods
16.CE 2 001.CV 001.SIP
16.CQ 4 001 002 003 004
16.E 30 001 002.MI 002.MI.SA 003 004 005 006 007 008.MI 008.MI.SA 009 010 011 012.MI 012.MI.SA 013 014 015 016 017 018 019.S 020.MI 020.MI.SA 021.S 022.MI 022.MI.SA 023.S 024.S 025.S
16.TB 63 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063
Total 3615